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4 Analytic Functions

4.1 Introduction

You must have studied earlier, that the quadratic az? + bz + ¢ = 0 has its roots
real, equal or imaginary (complex) according as its discriminant b2 —4ac is greater
equal or less than zero. We also know that square of any real number is never neg-
ative and as such our real number system fails to give the solution of the equations
of the type 22 +1 = OQorz? — 42 +7 = 0. Wetake i = v/—1 ori? = —1 and
then introduce z = a + ib, where a and b are real numbers and a + ¢b is called a
complex number; then a is called the real part of z and b the imaginary part of z
which are denoted by @ = Re(z),b = Im(z).

Two complex numbers are said to be equal i.e., x + 1y = a + ¢b. if and only
ifx=a,y=0.

If we change the sign of the imaginary part of complex number 2, then we
obtain another complex number which is called conjugate complex of the given
complex number and is denoted by z. Thus if z = a + ib then Z = a — b.

Clearly 2z = (a + ib)(a — ib) = a?® + b*> which is purely real also
z+7z z

5 == real part of 2 = Re(z); g = b = imaginary part of z = I'm(z).

21

Modulus and Amplitude: Polar form of Complex Number

Let P(a,b) be a point in the complex place corre-
sponding to complex number z = a + b, so that y

A
a=rcosfand b = rsiné.
Squaring and adding and also dividing, we P(a.b)
b
get, > =a? +b> r=+a2+b2and tanf = — ;
a
b b
orf =tan~! =
a 0
The quantity 7 is called modulus or absolute o 3 > X

value of complex number z and is denoted by |z
and the quantity 0 is called its amplitude.

z = a+ib = r(cos f+isin ) = re' is called polar form of complex number.
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The X OY - plane, in which the points represent the complex number, is called
the complex plane or Argand plane or Argand diagram.

Fundamental operations of algebra

Addition
z1 + 29 = (a1 + 1b1) + (a2 + ib2)
= (a1 +az) +i(b1 + b2)
Subtraction
21 — 22 = (a1 +1iby) — (ag + iby)
= (a1 — ag) + i(by — b2)
Multiplication
z1z2 = (a1 + ib1)(ag + ib2)
= ajag +i(a1bs + aghy) + i%b1by
= (a1a2 — bibg) + i(aibs + azby)
Division

Z1 a + ib1

29 as + by

a1 +1ib;  as — ibsy
X

as +iby  ag — iby
([ a1az + biby w biaz — baay
B a3 + b3 a2 + b3

The Complex Variable

The quantity z = xz+1y where = and y are two independent real variables is called
a complex variable. The Argand plane in which the variable z is represented by
the points is called z - plane. The point that represents the complex variable z is
point z.

Neighbourhood of a Point

Let 2y be a point in the Argand diagram. Then the neighbourhood of this point
2o is defined as the set of all those points z such that |z — zg| <€, where € is an
arbitrary small positive number. This € is called the radius of the neighbourhood
of 20.

Deleted Neighbourhood of 2

If from the neighbourhood of a point z( defined by |z — 29| <€, we exclude the
point zg, then such a neighbourhood is called the deleted neightbourhood of the
point zj i.e.

0<|z— 2 <€
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Neighbourhood of the Point at Infinitely

The set of all points z such that |z| > K where K is any positive real number is
called a neighbourhood of the point at infinity.

Function of a Complex Variable

If 2 = x + 4y and w = u + 7v are two complex variables, and if for each value
of 2 in a certain portion of the complex plane also called as the domain R of the
complex plane there corresponds one or more values of w then w is said to be
function of z and is written as w = f(2) = f(z +iy) = u(x, y) +iv(x, y) where
u(z,y) and v(z, y) are real functions of the real variables = and y.

Single Valued and Many Valued Function

If for every point 2 in a region R of the 2 - plane there corresponds a unique value
for w, then w is called a single valued function of z.
If more than one value of w corresponds to a point z in a region R of the z -
Plane, then w is said to be a many (multiple) valued function of z in that region.
For example

w = f(z) = z is a single valued function of z,

but w = f(z) = /z is a many valued function of z

Example 4.1

Express the following function of z in the form v + iv.
() w=cosz (@()w=tanz (i) w =secz

iv) w = e* Mw=logz (vi)w= 2
Solution:
(i) w=-cosz [ cos(A+ B)=
= cos(z + 1y) cos A cos B — sin Asin B
= coszcoshy —¢sinxsinhy cos 1y = cos hy
u = cosxcoshy and v = —sinzsinhy sin iy = i sin hy]
w = f(z) = u(z,y) +iv(z,y)
(ii) = tan z = tan(z + iy)
_ sin(z +iy)
= cos(z + iy)

_ 2sin(z + 1y) cos(x — iy)
"~ 2cos(z + iy) cos(x — iy)
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_ sin 2z + sin(2iy) N siniy = isinhy
~ cos 2z + cos(2iy) '
sin 2x v sinh 2y
= i
cos 2x + cosh 2y cos 2x + cosh 2y
sin 2z sinh 2y

and v =
cos 2z + cosh 2y Y cos 2z + cosh 2y

cosiy = coshy

(iii) w =secz = sec(x + iy)
1
cos(x + iy)
2 cos(z — iy)

T2 cos(z + iy) cos(x — iy)
2[cos x cos iy + sin x sin y]
cos(2z) + cos(2iy)
_ 2coswcosy + isinxsinhy
N cos 2z + cosh 2y

_2coswcoshy - _ 2sinzsinhy

~ cos 2x + cosh 2y ~ cos 2x + cosh 2y
@iv) w=e"

= e(@+iy)

=% eV

= ¢e"(cosy + isiny)

=e%cosy + ieTsiny

u=-e*cosy and v =e"siny

(v) w=logz =log re'? = logr + 6

= log(2? + y*)'/2 + itan~

1y

x
1

= —log(z? 4+ 9?) + itan~! Yy

2 x

1
u=g log(z% +4?) and v = tan™! (g)

(vi) w =

T+ 1y
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_ T — 1y
(z + 1y)(z — iy)
_x—uy
2 + 12
T .y
= —1
132+y2 $2+y2
T d Y
Uu=———and v=——"——=
132+y2 $2+y2

Limit of a Function of a Complex Variable

Let w = f(z) be any single valued function defined in the deleted neighbourhood
of z = a. We say that f(z) tends to limit ¢ as z tends to a along any path in
a defined region, if to each positive arbitrary number €, how ever small there
corresponds a positive number depending upon € such that | f(z) — ¢| <€ for all
points of the region for which 0 < |z — a| < 6.

Symbolically, we write

2 f(2) =1
Continuity
A function w = f(z) of a complex variable z defined for a certain region D is
said to be continuous at the point z = a of D), if given a positive number €, we
can find a number §(d > 0) depending on € such that | f(z) — f(a)| <€ for all
points z of D satisfying the condition 0 < |z — a| < 4.
i.e. f(z) will be continuous at z = a, if

o f(2) = fla)

Alsoif f(z) = u(z,y)+iv(x,y) then f(z)is continuous if and only if u(x, y)
and v(x, y) are separately continuous functions of x and y.

Example 4.2

Show that the function f(z) = = does not have a limit as z — 0.
z

Solution: 5 (w—iy)
fle) == (x+iy)

Suppose z — 0 along the path y = mx

Along this path f(z) = ﬁﬂ
x +imx
1—12m

= 0
14+2m as x 7
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which is

1—
Hence if z — 0 along the path y = mx, f(z) tends to i
im
different for different values of m.
Hence f(z) does not have a limit as z — 0.

Example 4.3

State the basic difference between the limit of a function of a real variable and
that of a complex variable. (AU 2012)
Solution:

In real variable x+ — 2 means z approaches x( along z axis (or) a line parallel to
T—axis.

In complex variable z — zp means z approaches zy along any path joining 2
and zg in z—plane.

Example 4.4
z? + 3y? . :
If f(z) = ———5, then show that lim f(z) does not exist.
(z +y)? 70
Solution:

If lim f(z) exists, then the value of f(z) is sufficiently close to a unique value
z2—20

when z is sufficiently close to 0.
Let z = = + iy = a + ima, where a is a very small value close to zero. As
z — 0 a — 0 in the limit.

r=a and y = ma
) 22 +3y?  a®+3m2a® 14 3m?
Z) = = =

(x +y)? (a + ma)? 1+ m?

Now taking the limits as z — 0, we have

. . 1+3m? 1+ 3m?
lim f(z) = lim =
2—0 a—0 (1 + m)2 (1 + m)2

This value depends on m and so it is not a fixed or unique value for all z suf-

ficiently close to 0. Hence '™ f(2) does not exist.

Example 4.5

2
Show that f(z,y) = i

x2 + 92

is discontinuous at (0,0) given that f(0) = 0.
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Solution:
Here f(0) is defined. We have to show that ™ f(2) does not exist. Consider the
curve y = mx along which x and y vary and come close to the origin.

Choose = = a, where a is a very small and close to 0.

as z—0,a — 0 in the limit.

f(2)

2zy 2a(am) 2a’m 2m

T2+ (@4 (am)? @ +a2m?  1+m?

Taking limit as z — 0, we have

2m 2m
li =1 =
zlg(l)f(z) -0 14+4m2 14+ m?2

This value depends on m and so it is not a fixed value for all z sufficient close
to 0.
Therefore lim does not exist and hence f(z) is not continuous at z = 0.

Z—

Example 4.6
3 _ X _ 0
If f(z) = M,z # 0, f(0) = 0, prove that fz) = 1) —0asz —0
z° +y z
along any radius vector but not as z — (0 in any manner.
Solution:
Now y — iz = —i%y — iz = —i(z +iy) = —iz
F2) =~ o) =0
)= ——— =
z6 +y2’
_ ;.3
i L O iy
z—0 z z—0 x° 4+ y2

now if z — 0 along any radius vector say y = max then

. f(z) = f(0) ) —atmi . —ima?
lim ———~ = —— 5 — 1M —F— 7
2—0 z 1—0 6 + m2x2 1—0 x4 + m?
Now let as suppose that z — 0 along the curve y = 2% then

_ _ 6 . _ .
lim 7}”(2’) 1) L
20 z z—0 16 + 26 2

£0
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4.2 Derivative of a Complex Function

A function f(z) is said to be differentiable at zg if lim () — £(z0)
2=z Z— 2

limit is called the derivative of f(z) at z and it is denoted as f'(2).
On putting z — zg = Az, we have,

o [ (20 + A2) — f(20)
Fz) = Al,lzgo Az

exists. This

when limit exists

The function f(z) is said to be differentiable at z if limit exists.

Analytic Function

The function f(z) is said to be analytic at a point zg if f(z) is differentiable at zg
and at every point in some neighborhood of zg.

A function f(z) is said to be analytic in a region R of the z-plane if it is
analytic at every point of R.

The terms regular and holomorphic are also sometimes used as synonyms for
analytic.

B Note: A point, at which a function f(z) is not analytic is called a singular point
or singularity of f(z).

4.3 Cauchy - Riemann Equations

Theorem: Necessary conditions for f(z) to be analytic

The necessary condition of w = f(z) = u + v to be analytic at any point z of
its region R is that the four partial derivatives u,, u,, v, and v, should exist and

satisfy the equations u, = vy and u, = —v,
) ou ov ou v
ie. — = — an — = - —
Oz oy oy Oz

Proof: Let f(z) = u(z,y) + iv(x, y) be analytic at any point z of its region

) 1 FETAD )

o Az—0 Az

(D
exists and is unique ie it is independent of the path along which Az — 0.

Now z=uz+1y
Az = Az + iAy
F(2) = ule,y) + iv(z, y)
fz+ Az) = u(r + Az, y + Ay) +iv(z + Az, y + Ay)
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Thus (1 .
us (D [u(z + Az, y + Ay) +iv(z + Az,y + Ay)]
! — 1
1) Arto Az +iAy
Ay—0
. Ju(z+ Az, y+ Ay) —u(z,y) vl + Az,y+ Ay) —v(z,y)
= lim - + -
Az—0 Az+iAy Az + iAy
Ay—0
(2)
must exist uniquely. Now we evaluate the limit in two different ways.
O Case: 1 Take Az to be purely real i.e. Az = Az, Ay =0and Az — 0
Hence from (1) we get
: +Az,y) —u(z,y) v+ Azy) —v(z,y)
/ — 1 [U(,I ? ) ’ i
Jz) Armo [ Az y Ax
— im, [l ) ol
Az—0 Az
: lim [[v(x + Az, y) — v(z, y)]
Az—0 Ax
0 0
:a_zﬂa_:::“””“”’” 3)

Since f(z) exists therefore the above limit exists i.e. u, and v, exists.

O Case: 2 Taking Az to be purely imaginary and hence Az = iAy,
Az =0
Hence from (2), we get

/ S [U(x7y+Ay) —u(x,y)
0= gm, [
i lim {[v(;g, y + Ay) —v(z, y)]
Ay—0 1Ay
_lou o
iy Oy
0 0
— —ia—z + a—z = —tuy + vy 4

Since f’(z) exists there fore the above limit exists i.e. u, and v, exist.
Also by definition we know that the limit should be unique and hence the two
limits obtained in (3) and (4) should be identical
Ju  i0v iOu  Ov

9z T or oy oy

Equating real and imaginary parts, we get
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ou Ov ou ov
— = and — =
dr Oy oy Ox
The above equations are known as Cauchy - Riemann equations and they may be

written as
Uy =vy and uy — vy

M Note:

1. The Cauchy -Riemann equations are referred as C-R equations

2. The function f’(z) is given by any one of the following

I1(2) = ug + ivg; f1(2) = ug — iy

I'(2) = vy —duy; f1(2) = vy + vy,
Lo dw
3. If w = f(z) then f’(2) is also denoted by -

dw  Ow Ow
Thus E = % = —Za—y
4. The C'— R equations are only the necessary conditions for a function f(z) to
be analytic i.e. If the given function f(z) is analytic it will satisfy the C'— R
equations. Conversely if a function f(z) satisfies the C' — R equations the
function need not be analytic i.e. C' — R equations are not sufficient for a
function to be analytic.

Theorem : Sufficient conditions for f(z) to be analytic

The function w = f(z) = u(z,y) + iv(x, y) is analytic in a region R if the four
partial derivatives u, uy, v; and v,

1. exist

2. they are continuous

3. they satisfy the C' — R equations namely u, = v, and v, = —v, at every
point of R.
Proof: Now w = u + iv oo Aw = Au+iAv

Au = u(z + Az, y + Ay) — u(z,y)
_ [ulz + Az,y + Ay) — u(z,y + Ay)] } 0
+u(z, y + Ay) — u(z, y)]

By mean value theorem we know that if f(x) is continuous in a < z < b and
differentiable in a < z < bthen f(a + h) — f(a) = hf'(a + 6h).
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Where 0 < 0 < 1
Applying the result in (1) we get

Au = Az - ug(z + Az, y + Ay) + Ay - uy(z,y + 02 Ay) ()

where 0 < 67 <land0 < 6y < 1
Again u; and u, are given to be continuous

lug(z + 1Az, y + Ay) — ug(z,y)| <€
|uy (2, y + O28y) — uy(z,y)| <7
now choosing €;<€ and n; < 1 we have from above.
ug(x + 01 Az, y + Ay) — ug(x,y) =€1
uy(z,y + 02AY) — uy(x,y) =m

Hence from (2) by the help of above relation, we get

Au = (ug(w,y)+ €1)Az + (uy(x, y) +m)Ay 3)
Similarly, we get
Ay = (vz(z,y)+ €2)Ax + (vy (2, y) +n2) Ay 4)
Now

Aw = Au + iAv
= [(uzt €1)Az + (uy +m)Ay)] + i[(va+ €2)Ax + (vy + 12) Ay]

+ 10y ) Az + (uy + 1vy) Ay + (€1 +i €2)

Aw= (ot v+ 5
or w Az + (1 + in2) Ay ©)
now by C-R equations u, = v, and uy, = —v, = i%v, and choosing

€3=€1 + €2and N3 =1 + N2
Hence (5) can be written as

Aw = (uy + 10;) Az + i(ivy + uy) Ay+ €3 Az + n3Ay
= (uy +ivg) (Az + iAy)+ €3 Az + 13Ay
dividing throughout by Az = Ax 4 iAy, we get

Aw_u +iv +€3A:U+n3Ay
Az 7 * Az + 1Ay

Taking limit when Az — 0 so that Az — 0 Ay — 0 €3— 0

n3 — 0, we get
dw w
! . .
z) = — = lim — =wu, +
f ( ) dz Az—0 Az v v
since u,, v, exist and are unique.
f'(z) exist i.e. the derivative of w = f(z) exists at every point in R.

Hence w = f(z) is analytic in the region R.
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Polar Form of Cauchy-Riemann Equations

Theorem: If the function w = f(z) = u(r, 8) + iv(r,#) is analytic in a region R

Oou Ou 0
then the partial derivation a—:f, 8—;, a—z and 8_2 must exist and satisfy the C — R
. ou 1 Ov ov u .. .
equations — = — — an = at every point in that region.

or rrf o rof
Proof: Given f(z) = u(r, ) + iv(r, 0) where z = r(cos 6 + isin0) = re'
Then Az = A(re®)
u(r + Ar,0 + Af) + iv(r + Ar,0 + A6)
flz+Az) = f(2) _ —u(r, ) — iv(r,0)
Az B A(ret?)
u(r+ Ar, 0+ Af) — u(r, 0)

1 . . A 10
orf'(z) = AILTO +Z,v(r + Ar, HT—E AB) — v(r, 0)
Arett

Given that f(z) is analytic, f’(z) is unique in whatever manner Az — 0.

O Case: 1 When Az — 0, Ar — 0 if 8 is kept fixed
Then Az = A(re?) = e Ar

N 1 [u(r+Ar,0) —u(r,0)  o(r+ Ar,8)—v(r,0)
F2) = Aligo et? [ Ar T Ar
o [Ou  Ov
__—1i0 - i
= |5 i) 1)

O Case: 2 When Az — 0, Af — 0if r is kept fixed
Then Az = A(re) = reiAg

{u(r, 0+ A0) —u(r,0) + i(v,0 + A) — v(r, 9)}

CfY T
fe) = Alggo reiiAf

R Tu(r,d + Af) —u(r,0) v(r,0 + A8) —v(r,0)

=7 Am, [E N, i A0

— 1 —10 la_u + @

o 100 00

1 | Ou Ov

= e [ 0 " ao] &

ou Ou Ov Ov

Y ar’ 80 ar’ 80
exists uniquely. From (1) and (2)

—if %_'_@ _1—@'9 _’@_'_@
° \or ") T F° "90 " o0

since f'(z) exists i.e. exists at every point in R. Since f'(z)
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Equating the real and imaginary parts, we have

ou 10v ov 10u
=—-— and =———

ar 1o o rof
These are the Cauchy - Riemann equations in polar coordinates.

4.4 Properties of Analytic Functions

I. Harmonic property
The real and imaginary parts of an analytic function w = u+1v satisfy the Laplace
equations in two dimensions i.e.

0*u  0%u 0*v 0%

—+55=0 and -5+ -5 =0

Ox? + Oy? e 52 > oy?
Proof: Since w = u + v is analytic in a region R of the z-plane, v and v satisfy
the C-R equations namely

Jdu  Ov
= (1)
or Oy
ou v
d === 2
T 9y T e @)
If u and v are assumed to have continuous second order partial derivations in
the region R, then Py Oy d O O
s = an = .
g Oxdy  Jyox Oxdy  Oyox
Differentiating both sides of (2) partially with respect to y, we get
0%u v
= 3)
ox 0xdy
differentiating both sides of (2) partially with respect to y, we get
0%u 0%
5= )
oy 0xdy

adding (3) and (4) we get
?u  O%u 0%v 0%v
5t 35 =5 — =
ox2  0y? Oxdy Oxdy

i.e., Ugz + Uyy = 0

i.e. the real part u satisfies Laplace equation. Similarly, differentiating (1)
partially with respect to y and (2) partially with respect to  and adding, we get

0*v 0% _
w a—yQZO 1.€. vm—i-vyy:O

i.e. the imaginary part v satisfies Laplace equation.
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H Note:

1. Any function of x and y having continuous partial derivatives of first and
second order and also satisfying Laplace’s equation is called a Harmonic
function. Hence u and v are Harmonic function if f(z) = u+iv is analytic.

2. If w and v are harmonic functions such that v + ¢v is analytic then each is
called the conjugate harmonic function of the order in the region R.

3. If f(2) = u+iv is an analytic function then u and v are harmonic functions

however if u&wv are any two harmonic function then f(z) = w + iv need
not be an analytic function.

II. The real and imaginary parts of an analytic function w = u(r,0) + iv(r,0)
satisfy the Lapalce equation in polar coordinates.

Proof: Since w = u(r, §) +iv(r, §) is analytic in a region R of the z-plane u and
v satisfy C' — R equation in polar coordinates.

ou 10v
b S 1
or rrb M
ov 10u
d 2= =22 2
M BT e @
Differentiating (1) partially with respect to r, we get
@ A v _10u (3)
orz  rorod  r2of
Differentiating (2) partially w.r.t 8, we get
1 0%u v
= (4)
r 00 000r

Assuming the continuity of the mixed derivatives we get.

9%v 10w 1 9%v 1 9%u 9%u B
o2 ror | r2002  r <8r89 B aem) -
Hence v satisfies Laplace equation in polar coordinates.
III. (Orthogonal property)
If w = u + v is analytic function the curves of the family © = ¢; and the curves
of the family v = ¢ cut orthogonally, where c¢; and cs are constants.

Proof: wu(x,y) = c; represents a family of curves. Consider a representative
member of the family u(x,y) = ¢1, corresponding to ¢; = ¢}

ie u(z,y) =c
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Taking differentials on both sides, we get

du=20
. Ou oy
e —d —dy =
ie g x+ay y=20
dy  Ou/0x

my is the slope of the curve u = ¢} at (z,y)
Similarly, considering a member of the second family whose equation is
v(z,y) = b, we get

dy  (Ov/ox)
dx (Ov/dy) 2,
where my is the slope of v(z,y) = d
_ (Ou/0z) (Ov/0x)
NV I = ) (@v/ow)

ou/0 —0u/0

= E 85; 83 . ( ( &j;gxy)) (by C-R equations)

= 1.

The product of the slopes is equal to —1. This is true at the point of intersec-
tion of the two curves u(z,y) = ¢} and v(z,y) = c.

Therefore every member of the family v = ¢; cuts orthogonally every member
of the family v = co.

H Note :

1. If f(z) = u(r,0) + iv(r, 0) is an analytic function, the curves of the family
u(r,0) = ¢ cut orthogonally the curves of the family v(r, §) = co where
c1 and ¢y are arbitrary constants.

2. The two families are said to be the orthogonal trajectories of each other.
Construction of an Analytic Function Whose Real or Imaginary
Part is Known

Method 1

O Case 1: Let u(z,y) the real part of the analytic function f(z) = u + v be
known.
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0 0
We first find v(z, y). Since u(z,y) is given a_u and 6_u can be found out.
Zz Yy

= ——dz+ —dy (1)
Yy X

u(x,y) being a harmonic function satisfies
0?u  0%u
4+ _ =0
0x?  Oy?

0 0
%(U:v) N a—y(—uy)

the R.H.S. of (1) is a exact differential integrating both sides of (1), we get
—0u ou
= — | d — | d
= G () ]+

where c is an arbitrary constant of integration.

O Case 2: Let v(x, y), the imaginary part of the analytic function f(z) is known.
If u(z, y) be the real part , then by C' — R equations.

Uy = vy and uy = —v,
ou ou
du = —dz+ —d
U P T+ oy Y
ov ov
= —dx — —d 2
oy T -y (2)
2 62
v(z, y)being harmonic functiona—xg + B—yg =0
We get
0 0

8_y (vy) = oz (—vz)

.. R.H.S. of (2) is an exact differential.

() (2)e]

where c is an arbitrary constant of integration.
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Method Il (Milne - Thomson method)

Let u(z, y) be the real part of the analytic function f(z) = u + v is given
We first find f’(z) as a function of z,

f'(z) = % + z% (since u is given%and g—ann be found out)
= % — zg—; (.. by C-R equations)
— ra) = i (5,0)
= %(2,0) — ig—;(z,())

(by Milne-Thomson rule replace by z and y by 0.)

ou ou

f(z):/ [%(z,O)ia—y(z,O) dz +c

where c is an arbitrary constant of integration.
Separating the real & imaginary parts of f(z) we can find the imaginary part

v(z,y).
M Note :

1. The real part of f(z) should be identical to the given u(x,y).

2. If the imaginary part v(X, y) is given, then

f(Z):/[g—Z(z,O)—l—i%(z,O) dz +c

Separating the real and imaginary parts of f(z), we can find the real part
u(z, y).

Example 4.7

Show that the function f(z) = |z|? is not analytic even though it is continuous
every where and differentiable at zero.

Solution:
Let f(z) = |2]? = 2Z.

lim flz+Az) — f(2) — lim (z4+ Az)(z 4+ Az) — 22
Az—0 Az Az—0 Az
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o ZAz 4 2Az 4+ Az Az
= lim
Az—0 AZ

Az

= lim [2 + z—z + Az]
Az—0 Az

7’6_7;6. —i0 0

= lim [z%—zm_w +re’ } (Az =re”)

r—0

=% + ze” 20

which does not tend to a unique limit as this limit depends on 6, the amplitude
of Az which is arbitrary.

f(2) is not differentiable at any point z # 0 and hence f(z) is not an

analytic at any point z # 0.

Thus continuity and differentiability of f(z) at 0, is as below:

|f(2) — f(0)| = |2|* = r? < efor all 2 for which 0 < |z — 0| < ¢, where 7 is
the modulus of z.

Thus f(z) has the limit f(0) as z — 0 and hence f(z) is continuous at 0.

o JO0+A2) - f(0)

Az—0 Az
AzAZ
= lim —2% = lim Az =0.
Az—0 Az Az—0

Since z— 0= Az — 0.

Though f(z) is differentiable as the point 0, it is not analytic at z = 0. Thus
f(z) is not analytic.

Example 4.8

Show that w = log z is analytic in the complex plane except at the origin and that
its derivative is 1/z.

Solution:

Let w=u+iv=1logz= logre“9

= logr + 6
u=1logr and v =20.
ou 1 Ou

Hence E:;, %:0
ov v
5—0, %—1

u_lov 0w 1low
00  rob 00  ro
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Thus the C' — R equations are satisfied for  # 0. since partial derivatives are
continuous except at z = 0, the given function is analytic except at z = (.

d o Ou ov
eld | —e W2 4 ;22
dz(ng) € <87’+18r>

o1
=¥ <—) where r # 0
T

Example 4.9

Show that the function y/|xy| is not analytic at the origin, although C' — R
equations are satisfied at the origin.

Solution:

Let f(2) = u(w,y) +iv(z,y) = /|2y
u(z,y) = /I|zyl;  v(z,y) =0.

LA B
Ou ~ im u(Az,0) — u(0,0) _o
Ml Av—o| Ay
Fo(A B -
Q| g [0B2,0) —0(0,0)] _
x| Az—0| Az |
Mloo Av—ol Ay
Hence % = g—z and % = —g—;} at the origin.
.". The C-R equations are satisfied at the origin.
Now
lim SO+ Az) - f(0)] lim VI]Az.Ay| -0
Az—0 Az  Az—0 Ax +iAy

~ Az—0 | Ax(1 +dim)
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(Lety = mz, Ay =mAxzx)
i
o o l+im o
This limit is not unique, since it depends on m. Therefore its derivative does
not exist at the origin. Hence f(z) is not analytic at the origin.

Example 4.10

If f(2) and f(z) are both analytic, show that f(z) is a constant
Solution: Let () = ulw,y) +iv(,y)

f(2) = u(z,y) —iv(z,y)
u(z,y) +i(=v(z,y))

Since f(z) is analytic, we have u, = v, and u, = —v,

Since f(z) is analytic, we have u; = —v, and u, = v,
Adding, we get,
u, =0 and uy, =0
and hence v; =0 and v, =0
f1(2) = uy +ivy =0

f(2) is a constant.

Example 4.11

If f(z) is an analytic function whose real part is constant, prove that f(z) is a
constant function. (AU 2011)
Solution:

Let f(z) = u + ¢v which is analytic

Given u=CC}

ou ov
prle 0 8_y =0
ou —0v
ie., Ov/0x =0
. ov ov
Since e 0= 8_y =0

v = constant = Cy
. f(2) =u+iv=C1+iCs, aconstant
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Example 4.12
Show that an analytic function in a region R, with constant modulus is constant.
(AU 2007)
Solution:
Let f(z) = u(x,y) + iv(z,y) be analytic in a region.
Since | f(z)] is constant. Say |f(2)| = c.
u? 402 =c
Differentiating partially with respect to x, we get
2uu, + 2vv, =0
or uuy +vv, =0 (D
Similarly —uu, +vv, =0 (2)

Using C-R equations  wu, — vv, =0

and wu, —ovuz =0
Eliminating u, from the above equation, we get

(u? + vH)uy =0
or u, =0 (because u® +v* = c)
Similarly v, =0
f(2) =uzp +1iv, =0

f(2) is a constant.

Example 4.13

Prove that every analytic function w = u + ¢v can be expressed as a function of z
alone, not as a function of Z. (AU 2010, 2012)
Solution:

Replace x and y by their equivalents

x:z;z ()
y="5— (ii)

Then w can be considered to be a function of two new independent variables z
and Z.
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To prove that w depends on z alone and does not involve Z it is enough to P.T

ow
g—().

3_w_3(u+iv)_@+_@
oz~ 0z 0z oz
_f0u s 0w Dy\  f00 du 0v 0y
T oz 0z oy 0z or 9z Oy 0z
e O oy -1 i* i
From(1)&(11)£—§ and % -7\

21
Hence a_w:{l.% L } {1@ 31}
0z 2 Ox 2 2 0or 2 0
)
2

) ow ou Ov
o o))

0
Using C.R equations 8—1_0 =0
Z

Hence there is no z in w.

Example 4.14
Test the analyticity of the function f(x) = Z. (AU 2009)
Solution:

flz) = =z z = x+iy

= -1y zZ = xz—1y

u =V v = —y

Uy = 1 Vg = 0

Uy = 0 Uy = -1

JoUg F Uy . f(z) = Z is not analytic.

Example 4.15

Prove that the following function are analytic and also find their derivatives using
definition.

() f(z) = 22 (i) f(z) = €* (i) f(z) = cosz (iv) f(z) = sinhz
W) f(z) = 2"
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Solution:

@ Let f(2) = u(z,y) + iv(z,y) = 2°
xr

= (z +iy)’
= (2° —y?) +i(2zy)
uw=2>—y? and v = 2y

ou ov

g—z = —2y, g—;} =2z
ou  Ov ou —0v
Clearly % = 8_y and 8_y = 8—1'

The four partial derivatives exist, they are continuous and C' — R
equations are satisfied for all finite values of = and y.

f(z) is analytic everywhere.

Now f(z) = uy + v,
=2z + 12y
= 2(x +iy)
=2z

(i) Let f(z) = u+iv = €* = *tW
=% e
= e”(cosy + isiny)

u=-¢e"cosy and v =e"siny

@—e’”cos %Y eTsin

or Y or T 4

0 0

3_Z = —¢e”siny, P e cosy

0 0 0 0
Clearly a—z = 8_Z and 8_1; = _8_::

All the four partial derivatives exist everywhere and are continuous and
satisfy the C' — R equations.

f(2) is analytic everywhere.
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Now f(2) = ug + ivy
=e®cosy +iesiny
=e"(cosy +isiny)
_ exez’y — ea:Jriy — ¢

(iii) Let f(2) =u+iv=cosz

= cos(z + iy)
= cos x cos ¢y — sin x sin ¢y

= cos xz cos hy — i sin z sin hy

u =coszrcoshy and v = —sinxsinhy

ou . v .
— = —sinzcoshy, — = —coszsinhy
Ox 0x
0
8—Z = cos rsinhy, a—;} = —sinx coshy
Ju Ov ou —0v

Clearly — =— and — =——

y or Oy oy Ox

The four partial derivatives exist and are continuous and also satisfy the
C — R equation.

*. f(z) is analytic.

Now f'(2) = ug + ivg
= —sinx cos hy — i cos x sin hy
= —(sinz cos iy + cos x siniy)
= —(sin(x + iy))
= —sin z.

(iv) Let f(z) = u+iv = sinhz
= sin h(z + 1y)

= sin hx cosy + ¢ cos hx siny

u=sinhrcosy and v = coshzsiny

ou ov . .
— =coshxzcosy, — =sinhzsiny
ox Ox
ou . ov
— = —coshxsiny, — = coshzcosy
dy Ay
0 0 0 0
Clearly gu_ v and gu _ Y

oxr Oy 8y__%
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The four partial derivatives exists and are continuous and the C — R
equations are satisfied.

*. f(2) is analytic
Now f/(2) = ug + iv,
= coshx cosy + isin hxsiny
= cos h(z + iy)

=coshz

(v) Let f(2) = u(r,0) +iv(r,0) = 2" = (re?)"
= r"(cosnf + isinnh)

u =r"cosnf and v = r" sinnd

% = nr" ! cosnb, % = nr" L sinnb
59 = N sinnd, =g =nr"cosn

au_l@ d ou 10u

Clearly — = — =
Y90 Traer M or T T roo

The partial derivatives exists and are continuous and the C' — R equations

are satisfied.

*. f(z) is analytic

Now f'(2) = e ®(u, +iv,)

0 n—l(

=e “nr" " (cosmb + isinnf)

nfleflemw
n—lez(n—l)ﬁ

=nr

=nr
_ n(reie)n—l

n—1

Example 4.16
Find where each of the following functions ceases to be analytic
(i)tan®z (i) ﬁ (iif) ﬁ (iv) sin A1z
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Solution:
() Let f(z) = tan®z
94
then f(z) = 2tan zsec? z = 51212
cos3 z
when cos® z = 0 f/(z) — oo
2n—1
i.e. when z = %
2n —1
f(2) is not analytic at z = w,n =1,2,3---.
.. z
(11) f(z) - Z2 1
f(2) = (> = D)(1) = (2)(22)
R
L (22 +1)
ATy

f'(2) does not exist i.e. if (22—-1)2=0 then f'(2) — oo
ie. ifz=+=1 f'(z) = o0
f(2) is not analytic at the points z = +1.

(i) Let f(2) = (; j‘ii)Q
(z 1)
_ 2t
(20

f'(2) does not exist. i.e. if (z — i)3 = 0 then f’(z) — oo
Hence f(z) is not analytic at the point z = 3.

(iv) f(z) =sinh™!z
fl(z) = _ f'(2) — cowhen 22 +1=0ie. 2= +i
V241

Hence f(z) is not analytic at the points z = =.

Example 4.17

Find the constants a, b, c if f(z) = x + ay + i(bx + cy) is analytic.

(AU 2010)
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Solution:
Given f(z) = (x + ay) + i(bx + cy) = u + iv
Take u = x + ay; v = bx + cy.
If the function is an analytic then C.R function is satisfied.
Uy = +Vy; Uy = —Vy
Uy =1 ;o Uy =a ;o Uz =0b i Uy =c¢
Hencea = —band c = 1.
Example 4.18
Is f(z) = 23 analytic? (AU 2009)
Solution:
flz)=2°
u+ v = (z +iy)>
= 2% —iy3 + i32%y — 3xy?
= (2° = 3ay®) +i(32°y — y°)
u:m3—3:cy2 U:35U231—Z/3
Uy = 32?2 — 3y? vy = 62y
uy = —6xy Uy = 3x? — 3y?
Uy = Uy and Uy = —Vg
. f(z) is analytic.
Example 4.19
Prove that 27 is not analytic. (AU 2009)
Solution:
f(z) = 2z

f(2) = (z +iy)(x — iy) = 2° + ¢
Here wu(z,y) =2"+y°, v(z,y)=0

ou ov
—:2 —_— =
ox v ox 0
8uz2y 81}_0

ay ay
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The Cauchy - Rieman equation are satisfied if 2z = 0 and 2y = 0.
(i.e.,)x=0and y = 0.

Thus, the C.R equation are satisfied at the origin; further the partial derivatives

of v and v are continuous. Hence 2z has a derivatives at the origin (only).

Though f(z) has a derivative at the origin, there is no neighbourhood of the

origin where it has a derivative.
f(z) is not analytic.

Example 4.20
Find the critical points of the mapping w = 2. (AU 2009)
Solution:
w.=2> (1)
dw
— =2 2
~ i N (2)
.. . dw
Critical points occur at il 0. Hence from (2) at 2z = 0.
z
(ie,)z=0
From (2), 1 d
Il A Guad 3
2z dw ®)

. . dz
Critical points occur also at — =0
w
Hence from (3) critical points occur at w = 0 also
(ie,) at 2?=0

(ie.,) at z=20

Example 4.21

If f(z) = u + iv is analytic prove that v — v and u + v are not analytic.

Solution:

Let f(z) = v + iu one not analytic
Uz, Uy, Uy & vy exist and satisfy the C-R equations namely

ou_ov oy oo
or Oy oy Oz
(i) Nowletg(z) =U+iV =u—iv
then U, = uy Ve = vz = uy

Uy = +uy Vy = —vy = —uy
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The C-R equations do not hold good

g(z) = u — iv is not analytic.

(i) Nowletg(z) =U 41V =v+iu

bn U0 _ou_ o
or Ox or Oxr Oy
ou  ov oV ou ov
dy  dy dy oy ox

the C-R equations do not hold good.

g(z) = v + iu is not analytic.

Example 4.22
Verify whether the function v = 2% — 3292 + 322 — 3y? + 1 is harmonic.
(AU 2010)
Solution:
up = 322 — 3y% + 6z ; uy = —bxry — 6y
Uy = 62 + 6 ; Uyy = —62 — 6

Here uy; + uyy = 62 + 6 — 62 — 6 = 0. The Laplace equation is satisfied.
Hence u is harmonic.

Example 4.23
Show that ¢ = 322y — > is harmonic. (AU 2009, 2010)
Solution:
- p =32y —y’
¢z = by oy = 322 — 3y?
Pzz = 6y Pyy = —6y
Ozz + Ppyy = 6y — 6y =0 .. is a harmonic function.
Example 4.24

Show that the function u(z, y) = 322y -+ —y3 —1? is a harmonic function. Find

the harmonic conjugate function v(x, y) such that v 4 v is an analytic function.
(AU 2009)
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Solution:

Given u(x,y) = 322y + 2% — 3> — ¢/

ou 0%u
%:6xy+2$ w:6y+2
ou 9 9 0%u

T 32 - 3y2 -2 = Gy -2
3y 3x° — 3y Y 7 6y
Pu

0x? " Oy?

and so u is a harmonic function
Since v is the conjugate harmonic of u, u + v is analytic.

= (=322 + 3y* + 2y)dx + (6zy + 22)dy

oy = /[—33;2 + 3y* + 2y)dx + (6zy + 22)dy + ¢
:/(Mdm—i—Ndy)—i—c

= / Mdzx (keeping y constant) + / (terms independent of = in N) dy

= /(—3:r2 +3y2 + 2)de + ¢

— /Bxs 2 which is the harmonic
v= A T3y r +2yr +c, conjugate of u
L f(z) =u+iv

= 3%y + 2% — 9> —v?) +i(3yPr + 22y — 23) + ¢
= —i[23 + 322iy + 3i%y? + Py + [22 + 2wiy + 2] + ¢
= —i(z +iy)® + (z +iy)* +c

f(z) = —iz* + 22 + ¢
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Example 4.25
Prove that u = 2z — 23 + 3292 is harmonic and determine its harmonic conjugate.
(AU 2010)
Solution:
u =2z — 23 + 3zy?
0 0
—u:2—3x2+3y2, —u:O—i-ny
Oz oy
0%u 0%u
W = —61’, 8—y2 = 6x
Pu  0%u
@—’_8—3/2:_633—}_63::0
= u is harmonic
0 0
fz) = a—z (2, 0) dz—i/a—Z (z, 0) dz
:/(2—3z2)d2—i/0d2
f(z)=22-2° Put z =z + iy
=2z +41y) — (z +iy)®
=2z + 2iy — 2% + xy® — 2ix’y — ix’y + iy + 2xy?
=2z — 2% + 32y® +1i (2y + y° — 32%y)
=u—+ 1
LU= 2y+y3—3:n2y
Example 4.26
Show that v = 2% — 3xy? 4 322 — 3y? is harmonic and its harmonic conjugate
function. (AU 2009)
Solution:

u =23 — 3xy® + 32° — 3y°
ux:3m2—3y2+6x, Upy = 6 + 6
uy = —6xy — 6y Uyy = —62 — 6
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Ugz + Uyy = 0 and so u is a harmonic function.
* v is the conjugate harmonic of u, u 4 v is analytic.

.. By C.R equations, u; = vy and uz = —v,
v v —0u ou
T ey T Ty T e

dv = (6xy + 6y)dx + (322 — 3y* + 6z)dy

Integral, v = / [(6zy + 6y)dx + (322 — 3y + 62)dy

62 3y°
= x2y+6:cy—%+3x2y+6my:3x2y+6xy—y3+0

Let w=u+iv=(2°—3zy®+ 32> = 3y> + 1) +i(32%y + 62y — > + O)

=23 4+322+144C, by Milne-Thomson rule

Example 4.27

Show that the following functions are harmonic and find the corresponding con-
jugate harmonic functions
(i) u = e®cosy (ii) v = log(z? + 3?) (AU 2008)

Solution:

Given u = e* cosy

Ou _ e” cosy P =e"cosy
or oz
Ou _ —e¥siny _82u = —e”cosy
oy dy?
0? 0?
8—:; + 8—;; =0 . u(z,y) is a harmonic function

But f(z) = u + iv where u = e cosy

f'(z) = ulz,y) _ Z,Bu(:c, y) (by C-R equations)
ox oy
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= Ou(z,0) i@u(z, 0) (by Milne - Thomson rule)
ox oy

() = / [ﬁuéi, 0) i@ua(;, 0) Qs+ c

—/ez —i(0)dz + ¢

:/ezdz+c

=ef+c

Now  f(z) =€ =" = ¢®cosy + ie®siny

v(z,y) = e"siny

(i) Given v(z,y) = log(z? + y?)

ov 2z 0%v o (2 42
Ox w2 +y? o2 22+ y? (22 +y2)?
ov 2y 0%v 2 49

oy 22+ 42 02 224y (22 +42)2
v v 4 4(2? + y?)

92 T o2 T ATy @R

. v(x,y) is a harmonic function.
Let f(z) = u+ iv where v = log(x? + 3?)

oy o 00

_ 0v(2,0)  0v(2,0)

= +1 (by Milne - Thomson rule)
y ox
B Jv(z,0) . 0v(z,0)
or f(z)—/[ 9y +1 e dz +c
_ /(o +i2/2)dz + ¢
=i42logz + ¢

Now f(z) =2ilogz

= 2ilog(re®)
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= 2i(logr + i0)

= 2ilogr — 26

= 2ilog(z? + y*)Y? — 2tan" y/x

= ilog(z® +y?) — 2tan ' y/z
u(z,y) = —2tan"'y/x

Example 4.28
Find the regular function whose imaginary part e” sin y. (AU 2009)
Solution:
v=e" siny
0
% et eony = n(a, )
¢1(z, 0) = ¢€?
0
% e iy =, o
¢2(Z, 0) =0
f(z) = /¢1(2, 0) dz + /(]52(2, 0) dz
= /ez dz+0
=ef+C
Example 4.29
Show that ———— is harmonic. (AU 2009)
z? +y?
Solution:
x
Let f = m
8_f - y2 _ 1,‘2

O (a2 +y2)*
Pf (@ +y?)%(=22) — (v — 2?)(2(2® + ¢*) (22))
ox? (22 4 y2)4
_ 223 — 6y
=
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0 —x
3_£ T (@2 2) (20)
Of (2 +y?)*(—2x) + (2zy) - 2(2® + y?) (22)

5 @+ o)
—223 4 6zy?
~ A
0%f  0*f  22% — 6ay? — 223 + 62y 0
0t o T T @ @

.. f is harmonic.

H Note:
0 0
(i) When the real part u is given use the formula f/(z) = v _
Ox y
.. o A , ov Ov
(ii) Where the imaginary part v is given use the formula f’(z) 90 + za—
x
Example 4.30
Find the analytic function whose real part is N — (AU 2009)
x2 + y2
Solution:
Let f(2) = u(z,y) + iv(n,y)
Given u = [EQLW
@( )= (@* +y*) (1) — (2)(2x) _ y° — 2
Ox ' (x2 + y2)2 - (x2 + y2)2
ou(z,0) 1
= —— 1
ox 22 b
u(z,y) —2zy
oy @y
0 0
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_ Ou(x,y)  Oul(z,y)

Now f'(z) = i oy
_ Ou(z,0) Z,8u(2,0)
Oz oy
fz) = / [auézj 0 _ z’ayézy’ Ol 4 ¢
1
—/——de—l—c— -+c
z
f(z) = S te
Example 4.31
Find the analytic function w = u + iv if u = e®(x cosy — ysiny). Hence find
the harmonic conjugate v. (AU 2007, 2009, 2010)
Solution:

Given u(x,y) = e*(zcosy — ysiny)

8U(a:); v, e®(zcosy — ysiny) + e”(cos y)
= e"(zcosy + cosy — ysiny)
6u(z,0) _ .z
or e*(z+1) M
ou . :
8_(:6’ y) =e*(—xsiny — (siny + ycosy))
=e*(—xsiny —siny — ycosy)
ou z —
(50 = () =0 @
dw  Ou(w,y) .Ou(w,y)
dz B ox ! 8y
_ Ou(z,0) Z,c’)u(z ,0) (by Milne-Thomson rule)
Ox dy
B ou(z,0)  Ou(z,0)
w = / |: 5 % 8y dz +c

using Bernoulli’s formula

— Z = o
= /(1 te)efdzte=ze"te, T given below

w=ze*+c
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Now  w = (x +iy)e*™™
= (@ +iy)(e” - )
=e"(z +1iy)(cosy + isiny)
=e"(xcosy — ysiny) +ie”(ycosy + xsiny)
v(z,y) =€e“(ycosy + xsiny) + ¢

B Note: Bernoulli’s formula /Pde = (P)(Q1) — (P)(Q2) + (P")(Q3) - -

e.g /(1 +2)efdz = (14 2)(e®) — (1)(e*) = €* + ze* — €* = ze?

Where dashes — differentiation
suffix ~ — integration

Example 4.32
Find the analytic function f(2) = u + iv if v = €2*(z cos 2y — y sin 2y). Hence
find w. (AU 2011)
Solution:
Given v = €2*(x cos 2y — y sin 2y)
v 2z 2x :
%(x, y) = e“¥(cos 2y) + 2e“*(x cos 2y — y sin 2y)
v 2z 2z 2z
8—(2,0) =ePz+2e%2(2) =e72(22+ 1) (1)
x
ov 20 . :
a—y(x, y) = e“¥(—2xsin 2y — 2y cos 2y — sin 2y)
G (0) = (0) =0 @
v(z,y)  Ov(z,y)
N ! — ) 9
ow f'(2) 3y +1 e
= dv(z,0) + Z,Bv(z, 0) (by Milne-Thomson rule)
oy Oz

f(z):/[av(;y’o) +z’a“é;’0) dz + ¢
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:/i'62z(22+1)d2’+6
= ize** + ¢
f(2) =ize®* +¢

Now i(x 4 iy)e? @) 4 e = (iz — y)(e*e*Y) 4 ¢

g
—~
w
N~—
I

= e?®(ix — y)(cos 2y + isin2y) + ¢
= —2®(xsin 2y 4 y cos 2y) + ie>* (x cos 2y — ysin 2y) + ¢
u = —e?®(xsin 2y 4 y cos 2y) + ¢

T e - e ()] - [0 (S)]

€2z 622 \

:zeQZ—i—T—T:ze

Example 4.33

Find the analytic function f(z) = u + iv, given that v = e* ~¥” cos 2zy. Hence
find u, the harmonic conjugate of v.

Solution:

. 2_,2
Given v = e Y cos2zy

g_v z,y) = ezLyQ(—Qy sin 2zy) + 2z e?" Y cos 2xy
x
81)((923; 0) _ 00
80(;’ y) = ez2_g2(—21: sin 2zy) — 2ye™ Y cos 2zy
Yy
0v(z,0) —0
dy
dw  Ov(z,y) .0v(z,y)
! _ = 9 5
f(z)_dz oy + oz

f(Z):/[g—Z(z,O)—&-i%(z,O) dz+c

= /2izezzdz +c put 22 =t 2zdz = dt
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:i/etdt+c:iet+c

f(z) = ie” +c
Now f(z) = jeletiv)?
— je(@ v +2imy) 4 .
= i[e”"’z_y2 e 4 (]
=ile” Y (cos 2xy + isin 2zy) + c]
= ie” Y cos 2xy — e =¥ sin 2xy + ¢

u(z,y) = —e" "V sin2zy + ¢

Example 4.34

If u(zr,y) = e *[(x? — y?)cosy + 2wysiny|, find the analytic function.
f(z) =u+iv (AU 2007, 2009)

Solution:

Given u(z, y) = e *[(2% — y?) cosy + 2wy sin y]

. aU(al'ay) _ _efx[(xQ o yQ) cosy + 25[7y sin y]
Tz
+ e *[2x cosy + 2y sin y|
Ou(z,0) a2 —z
. ¥ g e ?[z7] + e *(22) ()
6U(a$7 y) _ _e—x{_(lﬂ _ y2) Siny _ 2y cosy + 2x Siny + 21Ey COS y]
Y
Oou(z,0)
o _ @)
8u Z, .av x,
now f'(2) = ((937 d ! (83;y)
B 8u(,2:7 0) B iau(z, 0)
Oz Oy

f(z):/ [%4%(40) dz+c¢  from()and(2) (3)
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= /G_Z(QZ —2Hdz+c
= /ez2zdz— /ezzzdz
—z 2\, —z e
= e Fzdz — |(2%)e % — _12zdz
= 2/e_zzdz+ 22e™% — Q/e_zzdz

=e %2 tc

flz)=e7?22 +¢

Example 4.35

Construct the analytic function whose imaginary part is e =% (xz cosy + siny) and
which equal 1 at the origin. (AU 2009)
Solution:

Givenv = e *(xcosy +siny) and f(0) =1

w = —e “(zcosy +siny) + e “(cosy)
x
d(z,0) ., — =
or ¢ (1—2) [put = =z, y = 0] M
a’U(fL‘, y) _ T ]
5 =e “(—xsiny + cosy)
ov(z,0) |
) - . (2)
ov(z,y) . Ov(z,y)
/ —
f(z) = Ay t ox
_ dv(z,0) n i@v(Za 0) (by Milne - Thomson rule)
0v(z,0 0v(z,0
10= [ [P 25 e

= /ez +i(e (1 —2))dz+c¢
=—e “+i(ze ?)+c
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Also given f(0) =1

or c=2
flz2)=—e " +ize *+2

Example 4.36

sin 2x . . . )
Ifu= , find the corresponding analytic function f(z) = u+iv.

cosh 2y + cos 2z

Hence find, the harmonic conjugate of v. (AU 2008)
Solution:
Given u = sin 22

cosh 2y + cos 2z

Ou(z,y)  2cos2x(cosh 2y + cos2z) — sin 2x(—2sin 2x)
or (cosh 2y + cos 2x)?

_ 2cos 2w cosh 2y + 2

~ (cosh 2y + cos 2z)2

putz =zandy =0

Ou(z,0)  2cos2z+2 1
or  (14cos2z)2 1+ cos2z
2
= Soos?s sec? z (1)
ou(z,y) 2 8in 2 sinh 2y
— t = =
oy (cosh 2y + cos 2x)2 puts =z, y =10
ou(z,0)
= 2
oy 0 (2)
Now f/(z2) = 8u(;x’ v _ Z@uéﬂ; y)
= Ou(z,0) i@u(z, 0) (by Miline - Thomson rule)
or oy
f(z)= / [au(ai’ 0 _ zau((;g; 0 dz+c
= /sec2 zdz+c

f(z) =tanz + ¢
Now f(2) =u+iv=tanz+c
= tan(z +iy) + ¢
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sin(z + iy)
cos(z + iy)
2sin(x + iy) cos(x — iy)
2 cos(x + iy) cos(x — iy)
sin 2z 4 sin 2ty

+c

+c

cos 2x + cos 21y

sin 2z sinh 2y

cos 2x + cosh 2y * Y eos 2z + cosh 2y

sinh 2y

cos 2z + cosh 2y

Example 4.37

Find the analytic function, whose real part is

sin 2x

(cos h 2y — cos2z)’

(AU 2009)

Solution:
_ sin 2z
cos h 2y — cos 2z
o1(z, y) = uq
_ (cosh 2y — cos2x)2 cos 2z — sin2z(0 + 2 sin 2x)
B (cos h 2y — cos 2x)?
~ 2(cos2x cosh 2y —1)
(cos h 2y — cos 2x)?
2(cos2z — 1)
$1(2,0) = (i — c0s22)2
o 2
cos2z —1
P2, y) = uy
_ (cosh 2y —cos2x)0 — 2 sin2z sinh 2y
(cos h 2y — cos 2x)?
_ —2sin2x sinh 2y
(cos h 2y — cos 2x)?
¢2(Z, 0) = % =0

By Milne’s Thomson method,

f/(Z) = ¢1(27 O) —1 ¢2(Zﬂ 0)
2
- cos2z — 1
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2

1 —cos2z
2

2 sin? 2

1
sin? z

= —COSCC2 z

f(z)=— /cosec2 zdz
=cotz+C

Example 4.38

Find the ir2na_giréary part of an analytic function whose real part is
Ty e*zzn—chos 2@ (AU 2009)

Solution:

Given 1 — 2sin 2z

e2y 4+ e2Y — 2cos 2z

u(z,y)  4cos2z(e® + e 2 — 2cos2x) — 2sin 2x(4 sin 2x)

oxr (€2 + e=2Y — 2 cos 2x)?
Ou(z,0) (141 —2cos2z)4cos2z — 8sin? 2z
or (14+1—2cos2z)?

_ 8 cos 2z — 8 cos? 2z — 8sin? 2z}
N (2 —2cos?22)?
—8(1 — cos 22) -2

B 4(1 — cos 22)? T 2sin?z ~cosec’s o
ou(w,y)  —2sin2x(2e® — 2e~ %)
Oy (e +e 2 —2cos22)?
Ju(z,0) _ —4sin2z 4 4sin2z )
Jy (1 —2cos2z)?
/ Qu(z,y) Ou(z,y)
Now f'(z) = i dy

_ Ou(z,0)  .9u(z,0)
- Oz ! oy

(by Miline - Thomson rule)
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f(z):/ [3yg20)_i8u(azy,0) dz + ¢

= / —cosec’z dz + ¢

f(z) =cotz+c (from (1) and (2))
Now  f(z) =cot(z +iy) + ¢
_ c.os(x + Zy) Lo
sin(z + iy)

2 cos(x + 1y) sin(x — iy) N
= ¢
2sin(x + iy) sin(x — iy)

sin 2z — ¢ sinh 2y
= —|— C
cosh 2y — cos 2z

sin 2x — ¢ sinh 2y

- 7‘32“'2672‘1’ — cos2x e
_ 2sin2z —i2sinh2y 2sin 2z
eW e 2 —2cos2r €24 e — 2cos2x
4 —2sinh 2y
i
e +e=2 — 2cos 2x
(2,7) —2sinh 2y
v(z,y) =
Y= e 2cos 22
Example 4.39
2 h
Find the imaginary part of the analytic function whose real part is COSTCOSNY
cos 2x + cosh 2y
(AU 2010)
Solution:
2 h
Given y — L2c08Zcoshy

cos 2z + cosh 2y
~ Ou(z,y)  (—2sinx coshy)(cos 2z + cosh 2y) — (2 cos x cosh y)(—2sin 2x)

Oz (cos 2z + cosh 2y)?

ou(z,0)  (cos2z+1)(—2sinz) — (2cos z)(—2sin2z)

oxr (14 cos2z)?
_ —4cos? zsin z + 8 cos? z sin z
N (2 cos? 2)?
__mE tan z sec z (D)

COSzZCOS 2
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Ou(z,y)  (cos2x — cosh2y)(2 cos x sinh y)—(2 cos z cosh y)—(2sinh y)
oy (cos 2z + cosh 2y)?
Ou(z,0)

Jy

=0 2)

~ Ou(z,0) B Z,Gu(z,O) ~ Ou(z,y) B Zﬁu(a:,y)
Oz oy  Ox oy
(by Milne - Thomson rule)

f(z):/ [8“220)—1'6“(82’0) dz+c

Now f/(z)

= /sec z tanz dz + ¢ (from (1) and (2))

f(z) =secz+c
f(z) =sec(x +iy) + ¢

1
=———~+c¢
cos(x + iy)
5 .
_ co§(x iy) ANNp
2 cos(x + iy) cos(z — iy)
2 cos x cosh y . 2sinzsinhy

~ cos2z + cosh 2y Zcos 2z + cosh 2y
2sin x sinh y

v(z,y) = cos 2z + cosh 2y

Example 4.40

Construct the analytic function f(z) whose imaginary part is

e~ 2% (y cos 2y — x sin 2y).
Solution:
Given v(z,y) = e~ 2% (y cos 2y — x sin 2y)
ov _ .
2 (r,y) = e (~siny)
v
ov oy .
8—(1:, y) = e “*[—2ysin 2y + cos 2y — 2x cos 2y|
x
0
—v(z, 0) =e 2" (=22 +1) (2)

dy
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ov Ov
Now f(z) = 8—y(m,y) + z%(x,y)
oo

.O0v )
= a—y(z, 0) +iz—(2,0)  (by Milne-Thomson method)
ov Ov
f(z) = / [a—y(z,O) +Z%(z,0)]dz+c

= / [6_22(—22 + 1)] dz +c¢ (from (1) and (2))

=ze %% — /e2zdz + /eQZdz +c

=ze ¥ +¢

f(2) = (@ +iy)e @) 4 ¢
= (z +iy).e e
= e % (2 4 iy)(cos 2y — isin 2y)
= e %(z cos 2y — iz sin 2y + iy cos 2y + y sin 2y)

—Qm(

= e % (z cos 2y + ysin 2y) + ie” 2% (y cos 2y — x sin 2y)

u(r,y) = 6_21(93 cos 2y + ysin 2y)

B Note: Let w = f(z) = u + v be an analytic function.

(i) If u+ v is given, then let F'(z) = U + 4V is a new analytic function whose
real part U = u + v, then the required analytic function f(z) is

F(z)

f(z) = 11—

(ii) If uw — v is given, then let F'(z) = U + ¢V is a new analytic function whose
real part U = u — v, then the required analytic function is

F(z)

f(z):m

Example 4.41

If f(2) =u+ivand u — v = e*(cosy — siny), find the corresponding analytic
function.
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Solution:

Let F'(z) = U + iV be an analytic function such that
U=u—v=¢e"(cosy — siny)

oU :
O (2.4) = ¢"(cosy — siny)
oUu z
%(270) =€
oU z
%(Z,O) =e (_1)
/ _ a_U —_ a_U
Now F'(2) = o (z,y) —i5—(x,y)
= S0(:40) ~ 15 (:,0) by M-Thomson method)
oU oU
F(Z) _ / [%(2’0) 7’La—y(270) dZ+C

£ / le* +ie*ldz+ ¢  (from (1) and (2))

=1+’ +c¢
Hence required analytic function is f(z) = i e* + A.
i

Example 4.42

2sin 2
Ifu+v= T e_zzn_mz p—— and f(z) = u + iv is an analytic function, find
f(2). (AU 2007)
Solution:

Gi n 2sin 2z 2sin 2z
iven u+4v= =
e +e 2 —2cos2r  2cosh2y — 2cos2x

sin 2z

cosh 2y — cos 2z

We construct a new analytic function F'(z) = U +iV.

sin 2x

Such that U = =
e tha utv cosh 2y — cos 2z

oU(z,y)  2cos2x(cosh 2y — cos2z) — sin 2z(2sin 2x)

Ox (cosh 2y — cos 2x)?
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oU(z,0)  2cos2z—2

2
or (1 —cos22)? T oooosee s M
oU(xz,y)  2sin2xsinh2y
oy (cos2y — cos 2x)2
aU(gz,O) _0 )
Now F(s) - aUé%y) e
€z Yy
= aU(;’;’ 0) — iaU(;Zy’ 0) (by Milne-Thomson method)
oUu ou
/ _ e s
F(z)—/[am(z,()) zay(z,O)]dz—t—c

= — / cosec?zdz + ¢ (from (1) and (2))

=cotz+c¢

Hence the required analytic function is

F(z) cotz+c 1+1
= = = A
f(2) 11— 1= ( 5 )cotz—i—

Example 4.43

cosx +sinz —e Y

If f(2) = w + iv is an analytic function such that u — v =
and f(7/2) = 0. Find f(2).

Solution:

Let F'(z) = U + 4V be a new analytic function such that

2cosx —e¥ —eY

cosx +sinx —e™ Y
U=u—v=

2cosx —e¥ —e Y
(2cosz —e¥ — e Y)(—sinx + cosx)

oU(x,y) +(cosz +sinz — e Y)(2sinx)
or (2cosz —e¥ — e V)2
oU(z,0) 1 92
Tor 29 M
(2cosz —e¥ —e Y)e ™V — (cosz +sinx —e™Y)
oU(z,y) _ (—e¥ +e7)
or (2cosx —e¥ — e7Y)?
ou 1
—(2,0) = —= cosec?= (2)

oy 2 2
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U@y 0U(y)

/
F(2) ox dy
_0U(z,0) ZOU (2-0) (by Milne-Thomson method)
ox dy
ou Ou
F(z) = / [5(2,0) — Za_y(z70) dz+c
= / (1 ;_ ) cosec2§dz +c (from (1) and (2))
) PO
=" 2 cot 5 +c

Hence the required analytic function is

f(z)= ffz < —cot%—i—A
Since f(7/2) =0 .. cot(n/4)=c .. c=1

f(z) =1—cot(z/2)

Example 4.44

Verify that the families of curves u = c¢; and v = c¢a cut orthogonally when
w = sin z.

Solution:

Given w=1u+1iv =sinz
= sin(z + iy)
= —sinx cosiy + cosxsin iy
= sinx coshy + i cos x sinhy
u =sinzcoshy =¢; (1)

and v =coszsinhy = ¢y 2)
Differentiating (1) and (2) with respect to =, we get

cos x coshy + sinx sinh y <Z—y> =0

x
(dy) — cos z coshy
or —_ = ml =

dx sin x sinh y

and —sinxsinhy + cosxcoshy <Z_y> =0
x
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dy sin x sinh y
or —=mg=—""“—/6
dx cos x cosh y

<—cosxcoshy> <sin:z:sinhy>
mimeo = =-1

sin z sinh y cos x cosh y

Hence the two family of current u = ¢; and v = co form an orthogonal
system.

Example 4.45

If f(z) = 2>, show that u and v satisfy the C-R equations. Also prove that the
families of curves u = ¢; and v = c9 are orthogonal to each other. (AU 2004)

Solution:
Given f(2) =23 = (x +iy)?
= (¢® = 3zy?) + i(32°y — y°)
u = 23 — 3xy? and v = 3z%y — o>
ou 4 9 ov
97 3x* — 3y g —6zy
ou ov
— =—6 1 — = 322 — 3y?
By Ty By Z Y
ou  Ov ou ov
Clearl — = d —=——
R or Oy an y ox

Hence the C-R equations are satisfied. Differentiating u = c; with respect to
T, we get

d
322 — 3 <2zcy—y + y2> =0
dx
@ _ $2 o y2
der  2zy

=mp (say)

Now, differentiating v = ¢ with respect to x, we get,
dy dy
3(2 22) 322 =0
( e dm) Yo
@ _ —2xy

d,ﬁU - fI,'Z _ y2 = m2 (Say)

2 2
e — —2x
m1><m2=< Qxyy><x2—52>:_l

The two families of curves are orthogonal.
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Example 4.46

Ifu=2a%—-y?andv = —ﬁ, prove that both u and v satisfy Laplace
equation, but that f(z) = u + ¢v is not a analytic function of z.

Solution:
Givenu = 22 — y? and v = _%—FyQ
ou 0%u
o9 e
or 0 Ox?
ou 0%u
e btk
0? 0?
Hence = + L 0, i.e. u satisfies the Laplace equation
ox? = Oy?
v 2ay v 2y(y* - 327)
Oxr (22 + y?)? ox? (22 +y?2)3
vy —a? v 2y(3z? —y?)
Oy (2 +y?)? oy (e +y?)3
v 0%
— + —= =0ie. tisfies the Lapl ti
92 + 52 i.e. v satisfies the Laplace equation
ou , Ov ou v
But - # — and = # ——
4 or " Oy an dy Ox

The C-R equations are not satisfied. Hence f(z) = u + 4v is not an analytic
function of z.

Example 4.47

If u & v are functions of x and y satisfying Laplace’s equation, show that p + iq
is analytic where

ou Ov ou Ov

p:(’?_y_% and q:%—i_a_y
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Solution:

Given that both u & v are harmonic
0%u  O%u v 9w
—+——=0 d —+—-—=0 1
Ox? + Oy? e a2 + Oy? b

Hence f(z) = p + iq will be analytic if p & ¢ satisfy C-R equations, namely
op 0 <8u 81}) Pu 0%

dr 0z \dy 0x) 0xdy a2
b fou o P S )
oy Oy |0xr Oy oxdy 0Oy? Oxdy  Ox?
dp  Oq
or Oy
_ dp _ —0q
Similarly 8_y = o0

Hence p + iq satisfies the C-R equation and hence it is an analytic function.

Example 4.48
If f(z) is a regular function of z prove that
82 82 2 2
<@ + 8—y2> f(2)]" =4[f(2)]
(AU 2007, 2008, 2009, 2010, 2011)

Solution:
We know that
Uy = vy and uy = —v, 1)
Ugz + Uyy = 0 and vy + vyy =0
ou ov
_ ) iy Ou  Ov
Let f(2) =u+iv and f/(z) = o —Haw
)P =+ and /() = (2 2 (2 2 2)
N -\ Oz ox

2 2 2 2
(5 + 5 VP = (g + 5z ) 62+ 02
W 40?) | 02 (u? +0?)
N Ox2 * Oy?
= g [2u@ —|—2v@} + 2 [ Ou 61}]
ox ox ox oy




Analytic Functions  4.53

[P w00
N u8x2 Oor Ox U@xQ Or Oz

Y Do T a1

dy*>  dy 9y 9y Jdy  Oy?
() (L 2 (2

_ 0x?  Oy? 0x?2  Oy? Ox

B 68

ox oy ay>
_8u28v2—8v28u2 .

_y <%> +<%> *(W) +<%) ] (using (1)

“2a(3) e (3)

ou\?  [0v\? , .
=4 (8_Z> +<a—;) ] :4‘f(z)‘2 (using (2))

Example 4.49

If f(z) is an analytic function of z; show that

52 32 9
(@ + 3_y2) ud = 6u ’f/(z)‘
Solution: (AU 2006)
Let f(2) = u + iv, then }f’(z)’2 e 2 + ov 2 Since f(z) is analytic
\ ’ - \0x or ) y

ou B ov Ou ov

M = TP
dr Oy 0Oy ox
Pu  O%*u B v 0% (1)

A A TR T

Now




4.54  Engineering Mathematics - 11

Pu  0%u ou\? ou\?
_ 2
= [u <3w2 i 0y2> e (356) e (8y> ]
ou\ > ov\? .
= 6u [(%) + <—%) ] (using (1))

= 6ul ()|

:3[u282u ou 8u] S{UQ(?QU ou 8u}

Example 4.50

2 2

0
If f(z) = u—+ v is analytic, show that (W + 8—y2> log |f(2)| = 0. (AU 2012)
Solution:

Let f(z) = u + iv be analytic

log f(z) = log|f(2)| + ¢ amp f(2)

since f(z) # 0,log|f(2)| exists. Further since f(z) is analytic log f(z) is
also analytic.
log |f(z)| and amp f(z) are the real and imaginary parts of the analytic
function log f(z).
Hence both log | f(2)| and amp f(z) satisfy Laplace equation.

0? 0?
(55 + 5z ) Toel () =0

4.5 Applications

Harmonic functions play an important role in the study of two dimensional steady
flow such as fluid flow, electric current flow and heat flow, the paths of fluid parti-
cles are called stream lines and their orthogonal trajectories are called equipoten-
tial lines. When the flow is irrotational it can be shown that the harmonic function
é(x,y) such that velocity v = g—i’i + g—fﬁ of the fluid is in the = and y directions.
This function ¢(x, y) is called the velocity potential of the motion.

The function ¥ (x, y) such that ¢(x, y) + i1y (x, y) is analytic is called stream
Sfunction.

The analytic function f(z) = ¢ + v is called the complex potential of the
flow.

In heat flow problems, the curve ¢ = ¢1 & ¥ = co are respectively called
isothermals and heat flow lines.
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Example 4.51

In a complex electric field, the potential is w = ¢ + i), 1) = 3 — 3zy?. Find ¢.

Solution:
Given 1) = 23 — 3zy?, is the imaginary part of an analytic function.

Op(z,y)

a2 9.2
P 3x° — 3y
3?#(230) — 3,2 1)
ox
N (x,y)
oy 62y
81/}(27 0) —0 )
oy
dw
Now e
oN(z,y) | .O0Y(z,y) :
- oy +1 O (by C-R equations)
0%(2,0) +1 (2,0) (by Miline-Thomson rule)
=T oy x Y )
[ (2,0) aw(z, 0) Qs+ c.
ox

:/[0—1-2'32 Jdz+c=1i2"+c
w=iz>+ec.
but  w=i(z+iy)> +ec
= i[2® 4 32%iy + 3z (iy)? + (iy)?] + c.
= i[z® — 3zy?] + [-32%y + ¥*] + c.
6 =1y>—32%y+ec.

Example 4.52

An incompressible fluid flowing over the xy-plane has the velocity potential
d=a>—y>+ 5 - Examine if this is possible and find a stream function ¢).

x2 +
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Solution:
. x
Given ¢(,y) =a% —y* + 575
09 (22 +9%) -1 — 2(22) B y? — a2
8_{[ =2x + (12 T y2)2 =2x + (xz T y2)2
2 2 _ .2
@:2_23:(?@ x?) ; 8¢(Z’0):23_i 0
22 (22 +y?)3 oz 22
d¢ 2zy 9¢(z,0)
it VO =
dy NCEERR dy ¢
@ o 2z (22 — 3y?) )
o2 (22 + 42)3
from (1) and (2)
2 2
Po o,
ox? = Oy

¢ satisfies Laplaces equation.
Hence it can be a possible form of the velocity potential function.
To find the stream function ¢

Let  f(2) = ¢(z,y) +i(x, y)

F(z) = 8<Z>gr; Y _ z’aqjg’; Y [ s the real part]
_ 99(2,0)_,94(2,0) (by Milne - Thomson rule)
Oz oy
f(2) = / [‘%éi’ 0 _ z‘%(;y’ 0)} dz+c= / [22 - %} dz +c
f(z) =22+ % +c
f(2) = (z +iy)* + e

2 2 . T —1y
=z — 2iz —5 +¢
Y+ y~|—x2+y2+

2 2 €z . Yy
= — - Iy — — 2
<:U Y +x2+y2>+z<xy x2+y2>+c

Hence, the stream function is i (z, y) = 2zy +ec.

__ Yy
a:2+y2

Example 4.53

In a two dimensional fluid flow, if 2(2? — 3?) can represent the stream function.
If so, find the corresponding velocity function and also the complex potential.
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Solution:

Given stream function ¥ (x,y) = zy(z? — y?), which should be the imaginary
part of an analytic function & hence harmonic.

v =2’y -y’
o, 9 3 Py
9 STV Y 9p2 — 0Ty
o - 4 2, %)
By x° — 3zy”; G2 6xy
2 2
Clearly 2715 2715 =0

1) is a harmonic function, therefore it represents the stream function. Let
¢(x,y) be the corresponding velocity potential.
Then f(z) = ¢ + i1 is analytic.

_ () | O,

oy +4 ox
0U(z,

ox

y)

(by C-R equations)
_ =0

0)

(by Milne - Thomson rule)
Ay

fz) = / [awg;, 0 +z‘8wéi’ 0)

:/[z?’—}—i(())] dz+c
B (z +iy)*
4

4 g,2,2
% x2y + yz +c+i(xdy — 2y?)
x

dz +c

+c
4

4 2,2 4
_ 3r°y Y

Example 4.54

Find the corresponding complex potential w = ¢ + it if

¢ = (x — y)(2? + day + y?) represents the equipotential for an electric field.
Hence find .
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Solution:
If ¢ represents the equipotential for an electric field, it should be the real part of
analytic function and hence harmonic.

Given ¢ = (z — ) (2 + 4dzy + 3?)

% = (z —y)(2x +4y) + (5132 + 4y + y2)
824
a2 = @ 9)(2) + (22 +dy) + (22 + dy)
=2z —2y+2z+4y+2x+4y
= 6z + 6y (1
¢ ) 4
9y ~ @YUz 2y)+ (@ dey 447 ()
82¢>
£ —(6z + 6y) @)
from (1) and (2) \ )
82 0%
922 T2 =Y

Hence ¢ is harmonic and therefore it can represent the equipotential of an
electric field. The corresponding complex potential

w=¢+iv
dw 09 . @ _
4= or —(z,y) —1i ay (z,y) [¢is the real part]
09 0¢ .
= 9 - (@,0) - Za—y(z, 0) (by Milne-Thomson Method)

/[gi( 0)—1’2—(5(2',0) dz+ ¢

z/[322 — i32%)dz + ¢
:3/(1—i)22dz+c

(1—2)2 +c
but o(x,y) + i(z,y)
1-9)2 ¢

= (23 = 3zy® 4 322y — y3) +i(32%y — v® — 2% + 329°) + ¢

Hence 1 = 3(z%y + z1%) — (23 + %) + ¢

= (
=1 —i)(z+iy)’+ec
(
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Exercise 4(a)

= Part - A
1. Define the continuity of a function of a complex variable.
2. Briefly explain the concept of limit of a function of a complex variable.
3. Differentiate between the limit of a function of a complex variable and of a

real variable. (AU 2012)

4. Prove that f(z) = Re(z) is not differentiable at any point.
5. Prove that f(z) = I'm(z) is not differentiable at any point.
6. When is a function of a complex variable said to be differentiable at a point.
7. Define an analytic function. (AU 2010)
8. State the Cauchy-Riemann equations. (AU 2011)
9. State the necessary condition for a function for to be analytic.

10. State the sufficient condition for a function f(z) to be analytic.

11. State the Cauchy-Riemann equations in polar coordinates.

12. Prove that f(z) = ‘ 1 is differentiable at every point z # —1 and find

13.
14.

15.
16.
17.

z

/().
Show that zy? cannot be real part of an analytic function.

For what values of z do the function w defined by the following equations
cease to be analytic.

(a) z = e Y(cosu+ isinu),w = u + iv
(b) z = sinu cosv + icoshu sinv, w = u + w

(¢) z = sinu coshv + icosu sinhv, w = u + v
Show that f(z) = zZ = x — iy is not analytic function of z.
Show that f(z) = xy + iy is continuous everywhere but not analytic.

Test whether the following functions are analytic or not

(@) f(z) =e"(cosy —isiny)
(b) f(z) =e *(siny + icos y)
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18.

19.

20.

21.

22.

23.

© fey=e+
1 +ay
@ 1) = 5
z
@ f(z) = 2
1
O I0=anTs

Define a harmonic function and give an example.
What do we mean by conjugate harmonic?

Verify whether the following functions are harmonic

(@ xy? (b) @y
(c) e€%siny (d) y+efcosy
(e) e%cosy ®  2z(1-y)

Find the analytic function f(z) = u + iv, given that

@ u=uw b)) v=uay

© u=2zx(1l-y) (d u=-e"cosy

(e) v=—argz (f) w = cosx coshy
(2) v =sinhzsiny (h) x

= ——-
x? 4+ y?

Find whether the Cauchy - Riemann equations are satisfied for the following
functions.

(@) w= 22 (b) w = cos(x —iy)
© w:z+1 d) w=a? 1+ iy
€ w= % ) w=ay(y+iz)

(g) w=e"(cosy —isiny) (h) w=e""(cosy —isiny)
If f(z) is analytic, show that f(z) is a constant if
(a) Real part of f(z) is a constant

(b) Modulus f(z) is a constant

(c) Conjugate of f(z) is analytic
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24. Find the constants a, b, c and d so that the following are differentiable at every
point.

(a) f(z) = ax® —by? +icxy
(b) f(z) =2+ ay —i(bx + cy)
(©) f(z) = (2 + axy + by?) +ic(z? + dzy + y?)

= Part-B
25. Show that the function f(z) = % is continuous at the origin given
7Ty
that f(0) = 0.

2
26. Show that lim [%} does not exist, even though the function approaches
L Yy

z—0

the same limit along every straight line through the origin.

27. Show that the following function are discontinuous at the origin given that

Ty

@ f(z)= PO and f(0)=0
) f(z) = %‘yﬁ) and  f(0) =0
__ ryly— ) _
(C) f(Z) - (1‘3 +y3>($ +y) and f(O) =0
R
@ f(z)= B and f(0)=0
2
) f(2) = xf—ny 2#0 and f(0) =0
0 f(z) = ﬁ and  f(0) =0
28. Show that f(z) = széxi_;yé/) is continuous at the origin given that f(0) = 0.

29. Discuss the continuity at the origin of

@ f(z)= _ 2wy for every x and y excepting (0,0) and f(0) = 0.
z? + y?
3 A VAR

) (o) = ZEED V=D L gand f(0) = 0.

T2 + 12
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30.

31.

32.

33.

34.

35.

36.

37.

38.

2
© f(z) = M when x and y are not zero simultaneously and
e +y
F(0) =o.
Prove the following function are analytic and also find their derivatives using
definition.
(@ ® e
(¢) sinz (d) coshz
() logz ) z+1/z
(g) tanz (h) 1/z

Show that the following functions are harmonic, find the corresponding ana-
lytic function

() v=e""(zcosy+ ysiny)

(b) u = e**(ycos 2y + wsin 2y)

(¢) u=e%[(z? - y?) cosy + 2xy siny]

(d) vw=a>—3xy? +32% - 3y° +1

() u = —sinxsinhy (AU 2010)
-y

2?2+ y?’

equation but u + ¢v is not a regular function of z.

Ifu=2?—gy%andv = prove that both u and v satisfy Laplace’s

Show that the function u(z,y) = x* — 622y + y* is harmonic and determine
its conjugate.

Prove that u(x,y) = x(2? — 3y?) + (2? — y?) + 2zy is harmonic, find the
conjugate harmonic function v and hence f(z).

Verify that the family of curve u = constant and v = constant cut orthogo-
4

nally when w = 2*.
Given the function f(z) = 22 show that u and v satisfy the C-R equations
and Laplace equations and that the families of curve u = ¢; and v = ¢y are
orthogonal to each other.

Show that the curve r” = asecnf and r"* = (3 cosecn 6 intersect orthogo-
nally.

2sinx siny find
U.

If f(2) = u + v is analytic and v = ’
f(2) = u + v is analytic and v cos 2x + cosh 2y



39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.
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2sin 2x
e2Y +e~2Y 4+ 2cos 22’

If P + ¢Q is an analytic function of z and if P =

determine Q).

2z
Find th lytic functi = v, if = ———and f(1) = 1.
ind the analytic function f(z) = u + v, if u +v Zi g and f(1) =14

Find the analytic function f(z) = u+iv if u = e 72*¥ sin(x? — y?) and hence
find v.

Find the analytic function f(z) = u + v if

_ r—Yy

@u-v= 2?2 + dxy + y?
e¥ —cosx —sinx 3—1
b — = d — =
®) u—v coshy — cos2x and (- 2) 2
in 2

© utuv= sin 2z

cosh 2y — cos 2z

(d) u—v=e"(cosy —siny)
If f(z) = w + v is an analytic function, prove that
ok 0?
P _ 20 ()2 -2
(32 + 2 ) VP =1L G
If f(z) = u + iv is an analytic function, prove that

0? 0? » 9 9
Y AN A _ p—
(3 +50s ) laP = plo = DIl 21 P

If w = ¢ + i) represents the complex potential for an electric field and
¢ = 3xy — 3>, find 1.

If in a two dimensional flow fluid, the velocity potential ¢ = 22 — 32. Find
the stream function .

In a two dimensional fluid flow, the velocity potential is given by
¢ = 2* — 62%y% + y*. Find the stream function ).

Show that the equation 2%y — zy® + xy + = + y = c can represent the path
of electric current flow in an electric field. Also find the complex electric
potential and the equation of the potential lines.

Show that ¢ = 22 — y? — 3z — 2y — 22y can represent the stream function of
an incompressible fluid flow . Also find the corresponding velocity potential
and complex potential.
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28. Show that the circles |z| > 1 map onto confocal ellipses under the transfor-
mation w = z + 1/z.

29. Show that w = e transforms the region between the real axis and a line
parallel to the real axis at z = 74 into the upper half of the w-plane.

30. Find the image of the rectangular region 0 < y < 1, —7 < z < 7 and its
boundary under the transformation w = sin z.

31. Show that under the transformation w = cos z, straight lines parallel to z-axis
are transformed into confocal ellipse in the w-plane.

4.7 The Bilinear Transformation or the Mobius
Transformation

The transformation defined by

az+b
= 1
R cz+d M

where a, b, ¢, d are complex constants such that ad — bc # 0 is called a bilinear
or linear fractional transformation.
The transformation can be rewritten as

o= 2 ()

b d
Then if — = — or if ad — bc = 0 then for every value z, we have same value

a ¢
of w and we say that w is a constant. The expression ad-bc is called determinant
of the bilinear transformation.

Critical points

¢ az+b then dw ad—bc
w = _—=—
cz+d dz  (c+d)?
. w ) dw .
Now if z = —d/c then — = oo and if z = oo then P 0. These points
z z
z = —d/c and z = oo are the critical points where the conformal property does
not hold good.
b —d b
The inverse of the transformation = azt isz = —awth which is also a
ct+d cw—a

bilinear transformation.

Hence it is clear that for each z # —d/c we have a value of w and for each
w # a/c there corresponds a value of z and the correspondence between w and z
is one -one. The exceptional points z = —d/c and w = a/c are mapped into the
points w = oo and z = oo respectively.
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These points will not remain exceptions if we adjoin a new point called point
at infinity denoted by oo to the complex plane and the complex plane in this case
is called extended complex plane. Thus the critical point z = oo corresponds to
the point w = a/c.

To discuss the transformation (1) in detail, we can express (1) as the combi-
nation of simple transformation discussed in the previous section.

When ¢ # 0, (1) can be rewritten as

a <bcad> 1
w=— -+
c c cz+d

Make the substitution

wy =cz+d ()
1
wy = — (3)
w
Then w = A+ Bwsy 4)
where A:g and B = ¥ ad
c c

(2), (3), (4) represent three successive transformations that map z into w. Each
of the transformations maps circles and straight lines into circles and straight lines.

Hence the bilinear transformation (1) maps circles and straight line onto cir-
cles and straight line in general

if c=0 (1) becomes w:%z—l—g; d#0

is also of the type w = C'z + D; this transforms circles into circles.
Hence the bilinear transformation always maps circles into circles with lines
as limiting cases.

az+b

B Note: The transformation w = 7 has four arbitrary constants a, b, ¢, d

) ] cz +
which can be re-written as

_aj/dz+b/d Az+ B
oc/dz+1  Cz+1
which has three effective arbitrary constants and hence there conditions are nec-
essary to determine bilinear transformation.
In particular, three distinct points z1, 2o, z3 can be mapped into any three spec-
ified distinct points wy, wa, w3 i.e.
Azl—i—B AZ2+B A23+B
:Czl—i—l’ w2:Cz2+1 and w3:C’,23—|—1
we get three equations in A, B, C, solving then at the values of A, B, C' uniquely
and hence the bilinear transformation is unique.

w1



Analytic Functions  4.105

Fixed points

The points which coincide with their transformations are called fixed or invariant
points of the transformation.

In other words the fixed points of the transformation w = f(z) are obtained
from the equation z = f(z).

For example if w = f(z) = 22.

Then the invariant points are given by, z = z2 or 22 — 2 = 0
or 22 —2=0
or 2(z—1)=0
or z=0 and z=1

. # =0and z = 1 are the invariant points.

Cross ratio

(21 — 22)(23 — 24) "

(21 — 24) (23 — 22)
called the cross ratio of these points of the z-plane. (AU 2009)

If 21, 29, 23, 24 are distinct points taken in the order, then

Theorem: 1

To prove that cross ratio remains invariant under a bilinear transformation.

Proof:

az+b
L = - 1
et w i d ad —bc # 0 (D)

and let wy, wo, w3, wy be the images of the four points z1, 29, 23, 24 under the
bilinear transformation (1)

az1+b azm+b
cz1+d B czo +d
~ (ad —bc)(z1 — 22)
~ (cz1 +d)(cza +d)

(ad — bc)(z3 — z4)

d — = tc.
an w3 w4 ((623 i d) (CZ4 T d) etc

Then w] — Wg =

(w1 —wa)(wy —wyg)  (ad —be)?(z1 — 22) (23 — 2z1) (21 — 22)(23 — 24)

(wy —wg) (w3 —wz)  (ad —be)2(z1 — z4)(23 — 22) (21 — 24)(23 — 20)

the cross ratios are preserved under a bilinear transformation.

(w1, w2, w3, ws) = (21 22 23 24)
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Theorem: 2
The transformation w = f(z) determined by

(w—w)(wg —w3) (2 —21)(22 — 23)

(w—ws3)(wg —wy) (2 —23)(22 — 21) M
is a bilinear transformation which maps 21, 22, 23 on wy, wa, ws.
Proof:
(1) Can be written as
(w — w1 (wy — wy)(21 — 22)(2 — 2)
= (2 — 2z1)(22 — 23) (w1 — we)(wg — w) 2

Now, if z = 2z; in (2), we get w — wy, which implies that w; is the image
of z;. Similarly if we put z = z3 in (2) we get w = ws, showing that ws in the
image of z3.

If z = z9, then from (2) we have

(w —w1)(wz — ws)(21 — 22) (23 — 22) = (22 — 21)(22 — 23) (w1 — w2) (w3 — w)
or (w —w1) (w2 = ws) = (w1 — w2)(ws — w)
or w(wy — wg + w1 — ws) = (w1 — wy) + wy (wg — ws)
or w(wy — ws) = wa(wy — ws)

w = wWa
Hence the three points z1 2o 23 are mapped onto w; ws w3 respectively which
therefore is the required bilinear transformation.

Example 4.81

Find the bilinear transformation which maps the points z; = 4,20 = 0 and
z3 = —lintow; = 1, wy = 7 and w3 = 0 respectively. (AU 2007)
Solution:

We know that the required transformation is given by

(w—wi)(wz —wz) (2 —21)(22 — 23)

(w —w3)(wy —w1) (2= 23)(22 — 21)

(w=1)(i—-0) (2+4)(0+1)

(w—0)(i—1) (Z+1)( i)
_(

Hence

w—1
w (z+1)(— 1)
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1
w=—1 (Z + 1> is the required bilinear transformation.

Z —_
Example 4.82
Find the bilinear transformation mapping the points 21 = 1,20 = 4,23 = 1,
z3 = —linto w; = 2, wy = 7, w3 = —2 respectively. (AU 2009)
Solution:

The bilinear transformation that maps z; zo 23 into w; wo w3 is

(w—wr)(w2 —w3) (2 —21)(22 — 23)
(w —ws)(wg —wr) (2= 23)(22 — 21)
(w—=2)G(+2) (2-1)(E+1)
(w+2)(i-2)  (2+1)(E—1)
(w=2)  (-1@E+1)(E—-2)
(w+2)  (z+1D)(@E—1)(i+2)
_ (z=1D(=3—19)
(2 H)(=3+19)
3243 izt
- —3z-3+iz+i

(w—2)+(w+2) (=32+3—iz+1i)+(-32—3+iz+1)
(w—2)—(w+2) (-32+3—iz+i)—(-32—3+iz+1)
2w 6z +2i

- .. +b _ ctd
o 17 916 [ t=G=G =]
w 3z —1
or — =
—2 1z —3
—62 + 29
w = ﬂ is the required transformation.
1z —3
Example 4.83
Find the Bilinear transformation which maps z = 0, z = 1, 2 = oo into the points
w=iw=1w=—1. (AU 2013)
Solution:

(w, wy, we, wy) = (2, 21, 22, 23)
(w —wy)(we — ws) _ (z — 21)(22 — 23)
(w—w3)(wz —w1) (2 —23)(22 — 21)

(ie.,) (1)

Take 21 = 0; 29 = 1; 23 = 00y wy = &, wo = 1; wg = —1;
To avoid the substitution of z3 = o0;.
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1
Put z3 = —, and then Put 25 = 0

E (z —21) 22—l,>
1) - —

B
|
g
5
|
S
N
&

(w—1)(1+1) z(—1)
(w+4)(1—14) (-1)-1
(w—1i) 2(1=1)

2w z(1—14)+ (1414)

i (i) - (1 —i)z

z+1
w = -
1z +1
Example 4.84
What is the bilinear transformation which maps the points z; = 1, 29 =0, 23 =1
into the points w; = 0 we = ¢ and w3 = 3¢? (AU 2008)
Solution:

The bilinear transformation that maps z1, zo, z3 into wy, wa, ws is

(w—wi)(wa —wg) (2 —21)(22 — 23)
(w — ws)(wg — wq (z — 23)(22 — 21)

_ )

) )
(w=0)(i—3) (z+1)(
(

0—1)
(w—3i)(i—0) (2—1)(0+1)
2w —(z+1)
(w—3i)i  z—1
2w z+1

w — 3t z—1

— 31 _ a_c
Therefore (2w) + (w 3Z.):(Z+1)+(z 1) b = d
(2w) = (w=3i) (24+1)—(2—1) ath _ ctd
3w—31 _ 2z
w3 2

or (3w — 3i) = z(w + 3i)
3w — 2w = 32t + 3¢
w(3—2)=3i(z+1)
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3% 1
w = % is the required bilinear transformation.
-z
Example 4.85
Find the linear fractional transformation that maps the points z = —¢, 0, ¢ in to the
points w = —1, 7, 1 respectively. (AU 2010)
Solution:

The bilinear transformation or linear fractional transformation that maps the point
21, 29, 23 Into w1, we, w3 18

(w —wi) (w2 —w3) (2 —21)(22 — 23)

(w —ws)(we —w1) (2= 23)(22 — 21)

Letzy =1,20=0,2z3 =7and w; = —1, w9 =2, wg3 =1
(w+1)(i—=1) (2+19)(0—1)
(w=—1)@G+1) (2—14)(0+413)

w+1  —(=141i)+ (i+2)
w—1  (iz—2z+141)

Therefore (14 w)+(1—w) o (—1+z+21+ziz)+(1—z+li+z:z)
QA+w)+(1-—w) (“l+z4+i+iz)—(1—z+i+1iz)
2w 2422 . +b _ ctd
5 T eiten, L bTaTen=cal
(1
W= i 2) is the required transformation.
1+2
Example 4.86
Find the bilinear transformation which maps the points 2 = 0, — 7, — 1 into
w =1, 1, 0 respectively. (AU 2009)
Solution:

Let the transformation be

(w — wi)(we — w3) z—21)(z2 — 23)
(w1 — wa)(ws - w) 21 - 29)(z3 — 2)
L =) sty

(i—1)(—w) i(-1-2)

N
(
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w—i  z(—i+1)
w(—i+1)  —i(1+2)
(w—1)(=1)(1 4 2) = zw(—i +1)?
(—iw —1)(1+2) = aw(l — 1 — 29)

—tw—1—1izw—z=—21zw

—1—2z=—1zw + 1w

—1—z=1iw(l-2)

:7;(1—;)1;(z1+z') = (ii)

w
Example 4.87
Find the Mobius transformation that maps the points 2,4, —2 of the z-plane into
the points 1, ¢, —1 of the w-plane. (AU 2011)
Solution:
Letz; =2,29 =14,23 = —2and w; = 1,wy =1, w3 = —1.

The Mobius transformation that maps the points 21, 29, 23 into w1, wa, w3 is
(w — wl)(wz—w3) - (Z — 21)(2’2 - 23
(w —ws)(wz —w1) (2~ 23)(22 — )
(w—=1)G+1) (2-2)(i+2)
(w+D)(i—-1) ~ (z+2)(i-2)
(w—1)  32—6+42i— zi N
(w+1)  3z+6+2i+iz [

Therefore () _ 1) 4 (w4 1) (32 — 6+ 2i — 2i) + (32 + 6+ 2i + 1)
(w+1)—(w+1)  (32—6+2i—2i) — (32 4+ 6 + 2i + i)
2w 6z + 41

2 12— 2z

3z + 27 . . . .
= is the required Mobius transformation.

23

Example 4.88

Find the bilinear transformation that maps the points 27 = 1 + 4,29 = —1,
z3 = 2 —¢into w; = 0,wg = 1, w3 = 7 respectively. (AU 2010, 2011)
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Solution:

The bilinear transformation that maps the points 21, 23, 23 into wy, wz, w3 is

(w—wi) (wy —w3) (2 —21)(22 — 23)
(w—w3)(wz —w1) (2 —23)(22 — 2y)
(w—-0)(1-i) (2—-1—d)(=i—(2—1))
(w—1)(1—0) (z—2+14)(—1—29)
w o 2z—1-d)  22-2-12
w—i 3z+iz—T+i 3z+iz—T+i
(w)+(w—1)  (22—-2—-2i) + (3z+1iz—T+1)
(W) — (w—1)  (22—2—2i) — (32 + iz — 7 +1)
2w —1 52 +12—9—1
+1 —2z—1z+5—3
Szt —2z—91+1

R =1

2 =
or W= i5-3i "
4z 4i+4
=144z +5—3i
22 — 2+ 2
’LU:

—(1+4+i)z+5—3i

is the required bilinear transformation.

Example 4.89

Find the bilinear transformation which maps —1, 0, 1 of the z-plane into —1, —¢, 1
of the w-plane. Show that under this transformation the upper half of the z-plane

maps onto the interior of the unit circle |w| = 1. (AU 2009, 2011)
Solution:

Let 2z =-1 z9=0 z3=1

and wy =—1 wy=—t w3:1

The bilinear transformation that maps the points 21, 29, 23 into wy, wa, w3 is

(w—wi)(wy —w3) (2= 21)(22 — 23)
(w — ws)(we — wy) (z — 23)(22 — 21)

(w+1)(—i—1) (2+1)(0—-1)
(w—1)(—i+1) (z—=1)(0+1)
w+1  (z+1)(=1)(=i+1)
w-1 " (2=1(-1)(i+1)
4 )(—it1)  —iz—ifzt1 [ g=35=>
(z—=1(+1) 1z—1+z—1 Ztgz%l
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Therefore
(w+1)+(w—-1) (—iz—i+z+1)+(iz—i+2z—-1)
(w+1)—(w—1) (—iz—i+z+1)—(iz—i+z—1)
2w —2+2z

2 —2iz+2

zZ—1 fz—1
or W= — =1 -
—1z4+1 z+1

is the required bilinear transformation.
The equation of the upper half of the w-plane is Im(w) > 0.

:>Re[ — ]<0

z+1

£R [<z—¢)(;+z)}<0
|z + 4|2

= Re(z—1i) <0

= Re(z —i(z4+)—1) <0

= Re(z) —1<0

=z <1

=|z] <1

which represents the interior of the unit circle in the z-plane.
Hence under the transformation the upper half plane is mapped into the inte-
rior of the unit circle.

Example 4.90
Find the bilinear transformation which maps z = 1,7, —1 respectively onto
w = 1,0, —i. Also find the images of
)|z <1
(ii) concentric circles |z| = r,r > 1. (AU 2010)
Solution:
Let z21=1 2z9=1 2z3=-1
and wlzi w2:O w3:—i

The bilinear transformation that maps the points 21, 22, 23 onto wy, wa, ws is
(w —wi) (w2 —wz) (2 — 21)(22 — 23)
(w—ws3)(we —wy) (2 —23)(22 — 21)
(w—14)(0+14) (2—1)(i+1)
(w+13)(0—1 (z+1)(i—1)
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w—1i —(z—1)(i+1) vt =g=
w+i  (z+1)(G—1) ath - cid

Therefore
(w—1)+ (w+1) _ [(z—l)(i+1)+(z+1)(i—1)]
(w—1) — (w+1) z=1D(+1)—(=+1)@GE-1)
2w —(zi+1)

—24 14z
11—z

or w = -
1+ z

is the required bilinear transformation.

(i) Consider |z| <1
From the above transformation we get

S 1—-w
z=1 ——
1+ w

1—w
) ’<1
1+w

2| <1=

=1 —w| < |1+ w

= (1-w)(1-w) <(1+w)(l+w)
= 2(w+w) >0

=4u >0

=u>0

= Re(w) >0

which represents the real part of the w-plane.
Hence under the transformation, the interior of the circle.
|z| = 1 is mapped onto right half of the w-plane.

i N id _ . _
(ii) Now consider |z| = or Trwl ="

or 11— w|® =71 +wl?

or (1 —w)(1—w) =71+ w)(1+ )

(1402 _
or ww—(l_r2>(w+w)+1:0

1 2
or (u2+v2)—< +r>2u+1:0

1— 2

4.113
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2

which represents a circle in the w-plane with centre at <1 O> and radius

2
2r
1—r2

142 2
at (i O) and radius 1—T

T — 2 in the w-plane.

Example 4.91

Find the bilinear transformation that maps the points z; = 0,29 = 1,23 = o0,
into the points w; = —1,we = —2, w3 = —1 respectively. (AU 2007)
Solution:
The bilinear transformation that maps the points 21, 29, 23 onto wi, we, ws is
(w—w)(wz —w3z) (2 —21)(22 — 23)
(w—ws3)(we —wy) (2= 23)(22 — 21)

. 4 . 1
since 23 = 00, we avoid this substitution and put z3 = —

23
when z3 = 0o 25 = 0.
(w—wy)(ws —w3) (2 —21)(2223 — 1)
(w—ws)(wz —w1) (225 — 1)(22 — 21)
(w+1)(=2+4) _ (z-0)(0-1)
(w+i)(=2+1)  (0-1)(-1-0)
w+i  (=2)(=1) =z
w—i  1(=2414) -2+
or (w4 1)(-241) = z(w —1)
or —2w—-24wi+i=2z2w— 2z
or (—24+i—z)w=—2zi+2—1
—iz+2—1
or W= —"7—
—z—2+4+1
is the required bilinear transformation.
Example 4.92
Find the bilinear transformation that maps the points z = 0,1,00 into

w = 1, 1, —1 respectively. (AU 2012)
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Solution:

(w—wi) (w2 —w3) (2 —21)(22 — 23)

(w —w3)(w2 —w1) (2 — 2z3)(22 — 21)

1

21 =0, 20 =1, 23 =— where z5 =0
<3

wy =1, we =1, wg = —1

(w—i)(1+i) (=00 -1/z) 2(z3—1) %

@H)=D " (c-ta-o) & = GE-DO

zzh—z  —z 2

zzh — 1 T -1 1
w—i (1—i)z z—z
w+i  (1+i)1 1+

(w—i)+(w+i) (2—2)+A+4) [a_ ¢ a+b c+d
(w—i)—(w+1i) (z—zi)—(1+4) |[b d a—b c—d
2w z2(1—i)+ (1 +19)
—2i  z2(1=14) — (1 +1)
j i)? i— .
—_w_ZJr%_ZJF% AT a4
B NS

—i(z+14)  —iz—i® —iz+1  —i®z4i  z+i

z—1 z—1 z—1 iz — 2 iz+1

Example 4.93

Find the bilinear transformation that maps the points z = o0, 4, 0 into the points
w = 0,1, co. (AU 2004)
Solution:

Let z1=00 20=1 23=0
and w1 =0 wo=1 wgzg=0
The bilinear transformation that maps the points 21, 29, 23 into wy, wa, w3 is

(w —w)(we —w3) (2 —21)(22 — 23)

(w —ws)(we —w1) (2 —23)(22 — 21)

Since z; =00 put 2z = where 2] =0

2 =

/

1

and wz=o00 put w3z=— where wj=0
w
3



4.116 Engineering Mathematics - I1

Here (w — wr)(wawh — 1)

(wwh — 1) (wa — wy)

(

(2 — 23
(w=-0)(0-1) _(0-1)@E-0)

(-0

0-1@G—-0) (z—0)(0—1)

-1 : o .
w = — is the required bilinear transformation.
z

Example 4.94
Find the bilinear transformation which maps the points z = 0,—1,¢ onto
w = 1,0, 00. Also find the image of the unit circle |z| = 1. (AU 2009)
Solution:

Given z1=0 29=-1 2z3=1

wi =1 we=0 w3 = 00
Let the transformation be

(w—wi)(wy —w3) (2 —21)(22 — 23)
(w1 —wa)(ws —w) (21 — 22)(23 — 2)

)
(w — wr)ws <Z))—§ - 1) (2= 21)(22 — 23)

(w1 — wa)ws (1 - ﬂ) (21 — 22)(23 — 2)

(1

ws

(w—)(=1) _ (2)(=1-14)
i)(1) i-(i—2)
(w—1) z(i+1)

) 1 — 2z

z[~w+i—(—=1+1)

) =
wi—zw+1+2i—2z2(-14+17) =0
| =
Z(—w+i+1—1i)=
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Unit Circle |z| =1
1w+ 1
w—1

-

liw + 1| = |Jw — 1|
li(u +iv) + 1] = |u+iv — 1
(1 =) +iu| = [(u—1)+ v
w?+(1—v)? = (u—1)% 42
w1 +0% =20 =141 —2u+ v
2u—2v=0

Uu=v

The straight lines passes through origin in the w-plane as shown in the figure.

e
Ei

<V

z-plane

Example 4.95
Find the Mobius transformation which sends the points z = 0, —¢, 2¢ into the
points w = 51,00, 1/3 respectively. (AU 2007)
Solution:

Let 21 =0 Zo=—1 23=21

and w; =5i wy=o00 w3=1/3
The bilinear transformation that maps the points 21, 29, 23 into wy, wa, w3 is

(w —wi) (w2 —wz) (2 — 21)(22 — 23)

(w —ws)(we —w1) (2 —23)(22 — 21)

. 1
Since wy = 0o put we = — where w) = 0.
w2

(w —w1)(1 — whws) _ (z — 21)(22 — 23)
(w—w3)(1 —wywr) (2 —23)(22 — 21)
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(w=5i)(1-0) _ (2= 0)(~i—2i)
(w—i/3)1—0)  (z—2i)(—i—0)

w — D _ —3z1 _ 3z

w—1i/3  —i(z—2i) z—2i
(w—5i) + (w—14/3)  (32) + (2 + 2i)

Theref =
0T o =50 — (w—4/3) ~ (32) — (= + 2i)
6w — 160 4z +2i
—14i  22-2i
3w—8  2z+1
~Ti  z—i
—2z + 5i
Hence w = w is the required bilinear transformation.
—tz+1
Example 4.96
Find the bilinear transformation which maps the points 2 = 0, 1 ,00 into
w =1, 1, —irespectively. (AU 2010)
Solution:
(w, w1, w2, w3) = (2, 21, 22, 23)
(e (w—wi)(w2 —ws) (2 — 21)(22 — 23) 0
(w —ws)(ws —wi) (2~ 23)(22 — 21)
Take 21 = 0; 29 = 1; 23 = o0y wy = & wo = 1; wg = —1;
To avoid tlie substitution of z3 = oco;.
Put z3 = —, and then Put 2§ = 0 .
<3
z—Z
BN CEUACRES e -2)
(w — w3)(we — w1) ( 1
— ) (k2 — 21)
<3

(w—wi)(wp —w3) (2 21)(2223 -1
(w — ws)(we — wy

(w+i)  (141)
2w z2(1—1d)+ (1+1)

i (1+4)—(1—4)z
z4+1
1z+1
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Example 4.97
Find the bilinear transformation that maps the point 0, —1, ¢ of the z-plane into
1,0, 0o of the w-plane. (AU 2008)
Solution:

Let z21=0 2=-1 2z3=1

and w1 =171 wy=0 w3 = 00
The bilinear transformation that maps the points 21, 29, 23 into wy, wa, ws is
(w — wi)(we — w3) _ (z — z1)(29 — 23)
(w —ws)(we —w1) (2 —23)(22 — 21)

Since w3 = oo put w3 = where w; =0

ol
3
(w —wy)(wowh — 1) ol (z — 21)(22 — 23)
(wwy — 1) (w2 —w1) (2 — 23)(22 — 21)
(w—3)(0-1)  (2—0)(—1—1)
0-1)(0—13) (z—1)(-1-0)
(w—i)(=1) = —2z(141)
i (2 —19)(-1)
—zi(l4+14) —zi+z
w — = " =
z—1 z—1
—zi+z zi+z+ 2zt +1
w= — =
z—1 z—1
z4+1 . . - .
orw = - is the required bilinear transformation.
Example 4.98
Find the bilinear transformation which maps z = 1, 0, — 1 into
w = 0, —1, oo respectively. What are the invariant points of the transformation?
(AU 2010)

Solution:

The bilinear transformation that maps z1, 29, z3 into wy, wa, ws is

(w — wi)(we — w3) B (z — 21)(22 — 23)

(w —ws)(we —w1) (2 —23)(22 — 21)
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. 1
Since w3 = oo, ws =0 w3 = —
w

(w—wi)(wows — 1) (2 —21)(22 — 23)
(wwh — 1) (wz —w1) (2 —z3)(22 — 21)
(w=0)0-1) (z-1)(0+1)
O0-1(-1-0) (2+1)(0-1)
—w_ (-1
I —(z+1)
z—1
w =
z+1
is the required bilinear transformation.
Example 4.99
Find the bilinear transformation which maps the points z = 1,4, —1 onto the

points w = 4,0, —¢ and find the fixed points of this transformation. (AU 2009)
Solution:

Given z1=1 2z9=14¢ 2z3=-1
wlzi U]QZO wgz—i

Let the transformation be

(w—wi)(wz —w3) (2 —21)(22 — 23)
(w—w3)(wy —w1) (2 —z3)(22 — 21)
£ (w —14)(0 — (=4))] (z=1@—(-1)
[(w— (=)0 @) [(z— (1) —1)
N w —1)() :(2—1)(z+1)
(w+i)(=i) (z+1)(6E—-1)
w—i z—1 1+1 i+1
T Wi 2+l i1 i+t
w—1 z-—1 —14+7+2+1
- _w+i:z+1'< —2 >
w—1 z—1 21
~ _w+z‘:z+1'<——2>
w —1 Coz—1
= w+z::Z"z—|.—1
N U)—’L:ZZ—Z

w41 z+1
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Wz +w—iz —i=wzi+ 2i> — wi — i’

wz4+w—1iz—1t=wz —z—wi+1

wzt+w—iz—it—w+z+wi—1=0

wiz+1l—zi+il=i+iz+1—z
(1—-2)+i(z+1)

T 2(l—i)+ (1 +10)

Example 4.100

Find the invariant points of the transformation

. 6z—9 . 2z + 44

Hw= (11)w—iz+1

z—1 . (24+1)z—2

(1) w = 1 av) w = AN
Solution:

If z; is a fixed or invariant point of the transformation, then z; is transformed into
(i) Consider

6z—9
w =
¥4
62’1—9
z1 =
21

or 2 —62,+9=0
(21 -3)%*=0

3, 3 are the invariant points of the transformation.

(ii) Now
2z + 44
Tz +1
221 + 41
=TT
or iz% + 21 =221 — 41
22— 3iz14+4=0
(z1 —4i)(z+1) =0
z1 =41, —1

Hence 4¢ and —1¢ are the invariant points of the transformation.
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z—1
111 =
(i) v z+1
21—1
21 =
! z1+ 1

or z(xn1+1)—(x1—-1)=0
or Z4+1=0
or 21 = +1
Hence +: and —: are the invariant points of the transformation.
(2+1i)z—2
zZ+1
(2+1d)z — 2
21+
or z1(z14+19) = (24421 +2=0
or 2725 +2=0

24++v4-38
C — O ——— =
2

(iv) w =

Z1 =

or 1+

Hence 1 + ¢ and 1 — ¢ and the invariant points of the transformation.

Example 4.101

2246

. AU 2009
247 ( )

Find the invariant points of the transformation w =

Solution:

The invariant points of the transformation is given by

_2z+6

247
224 T2-22—-6=0
22452-6=0

22— 2462—-6=0
2(z—=1)+6(z—1)=0 = (2z—1)=0 (or) 24+6=0

= ‘zzl (or) z:—6‘

Example 4.102

Prove that a linear transformation has almost two fixed points. (AU 2012)
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Solution:
b
Take w = ﬂ, a bilinear transformation
cz +
b
Put z = ﬂ, to get fixed points
cz+d

i.e., z(cz +d) = az + b, which is a quadratic in z

.. There will be almost two fixed points.

Example 4.103

6z —9
Find the fixed points of mapping w = : . (AU 2013)
Solution:
. . 6z —9
The find points are given by z =
z
ie, 22=62—9
22— 62+98=0
(z—=3)(#—3)=0
ie, z2=3,3
Exercise 4(c)
= Part - A
1. Define a bilinear transformation. (AU 2007)
2. Define Mobius transformation. (AU 2008)
3. Define the cross ratio of four points in a complex plane. (AU 2008)

4. What are fixed points of a transformation?

5. What is Schwarz - Christoffel transformation? Also write the formula.

6. State the cross - ratio property of a bilinear transformation. (AU 2008)
7. Find the invariant points of the transformation w = 23. (AU 2010)
8. What are invariant points of a transformation?

9. What does a general bilinear transformation transform a circle into.
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10.

11.

12.

13.

14.

15.

16.
17.
18.

19.

=

21

22

az+b
cz+d’

What are the critical points of the bilinear transformation w =
ad — bc # 0?

Define the determinant of a bilinear transformation.
144z
z4i

Find the value of the determinant of the transformation w =

Find the invariant points of the transformation

3z—4 . (2+1)z—2 .. z—3
-1 z—0 z+1
—1—1 ot — 51

. z
Ww==—"r" Mw=7m

(i) w =

In general, how many invariant points does a bilinear transformation have?

az+b
cz+d

Find the condition for the fixed points of the transformation w =

be equal.

Find all the bilinear transformation without fixed points in the finite plane.
Find all the bilinear transformations whose invariant points are +1.

Find all the bilinear transformations whose invariants points are +z.

Find any bilinear transformation having as the only invariant point.
Part - B

Find out bilinear transformation which maps the points

(1) z1=1,29=1,23 =—1 onto wy =i, we =0, w3 = —1i
(1) 21 = —i,20=0,23 =¢ onto w; = —1,wy =4, w3 =1
@ii) z=1,—¢,0 onto w=20,2,—3

Find the bilinear transformation that maps the points

() z1=00 29=1,23=0 onto w; =0,wy =1, w3 =00
(i) z=-1,1,00 onto w=—1—1,1
(i) z=1,-1,00 onto w=1-+1¢1—14,1

(iv) z=1,4,—1 onto w=0,1,00

if

to
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